Abstract

Aero-engine compressor blade and disk assemblies are subjected to radially outward centrifugal force due to blade rotation and the bending of the blade due to gas pressure. Static analysis is done initially to find the critical crack orientation at the root of the blade. With simulated initial cracks, the cracks are allowed to grow in low cycle fatigue (LCF) and isochromatics are captured at selected intervals. Using digital photoelasticity, isochromatic images are used along with an over-deterministic least-squares approach to find the fracture parameters. As the stress fields are very complex, a multiparameter solution with a higher number of parameters was needed to model the stress field. Crack growth angles are evaluated using maximum tangential stress (MTS), strain energy density (SED), and generalized MTS (GMTS) criteria. It is observed that the GMTS criterion predicted closer results to that of experimental values, which implied the significance of T-stress in predicting the crack growth angle.

References

1.
Durelli
,
J.
,
Dally
,
J. W.
, and
Riley
,
W. F.
,
1957
, “
Stress and Strength Studies on Turbine Blade Attachment
,”
Proc. SESA
,
16
(
1
), pp.
171
186
.
2.
Papanikos
,
P.
, and
Meguid
,
S. A.
,
1994
, “
Theoretical and Experimental Studies of Fretting Initiated Fatigue Failure of Aero-Engine Compressor Discs
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
5
), pp.
539
550
.10.1111/j.1460-2695.1994.tb00253.x
3.
Rajasekaran
,
R.
, and
Nowell
,
D.
,
2006
, “
Fretting Fatigue in Dovetail Blade Roots: Experiment and Analysis
,”
Tribol. Int.
,
39
(
10
), pp.
1277
1285
.10.1016/j.triboint.2006.02.044
4.
Plesiutschnig
,
E.
,
Fritzl
,
P.
,
Enzinger
,
N.
, and
Sommitsch
,
C.
,
2016
, “
Fracture Analysis of a Low-Pressure Steam Turbine Blade
,”
Case Study Eng. Failure Anal.
,
5–6
, pp.
39
50
.10.1016/j.csefa.2016.02.001
5.
Shi
,
L.
,
Wei
,
D.-S.
,
Wang
,
Y.-R.
,
Tian
,
A.-M.
, and
Li
,
D.
,
2016
, “
An Investigation of Fretting Fatigue in a Circular Arc Dovetail Assembly
,”
Int. J. Fatigue
,
82
, pp.
226
237
.10.1016/j.ijfatigue.2015.07.025
6.
Ruiz
,
C.
,
Boddington
,
P. H. B.
, and
Chen
,
K. C.
,
1984
, “
An Investigation of Fatigue and Fretting in a Dovetail Joint
,”
Exp. Mech.
,
24
(
3
), pp.
208
217
.10.1007/BF02323167
7.
Ramesh
,
K.
,
2000
,
Digital Photoelasticity-Advanced Techniques and Applications
,
Springer
, Berlin.
8.
Ramesh
,
K.
,
2017
, “
DigiTFP® Software
,”
Digital Photomechanics Lab, Indian Institute of Technology Madras
,
Chennai, India
, accessed Dec. 27, 2019, https://home.iitm.ac.in/kramesh/dtfp.html
9.
Papanikos
,
P.
,
Meguid
,
S. A.
, and
Stjepanovic
,
Z.
,
1998
, “
Three-Dimensional Nonlinear Finite Element Analysis of Dovetail Joints in Aero-Engine Discs
,”
Finite Elem. Anal. Des.
,
29
(
3–4
), pp.
173
186
.10.1016/S0168-874X(98)00008-0
10.
Naumann
,
H. G.
,
1982
, “
Steam Turbine Blade Design Options: How to Specify or Upgrade
,”
Proceedings of the Eleventh Turbomachinery Symposium
, Texas A&M University, pp.
29
50
.10.21423/R1637T
11.
Forshaw
,
T.
,
Taylor
,
R.
, and
Chaplin
,
H. C.
,
1956
, “
Alternating Pressures and Stresses in an Axial Flow Compressor
,” Aeronautical Research Council, London, Report No. 2846.
12.
Ramesh
,
K.
,
Gupta
,
S.
, and
Kelkar
,
A. A.
,
1997
, “
Evaluation of Stress Field Parameters in Fracture Mechanics by Photoelasticity-Revisited
,”
Eng. Fract. Mech.
,
56
(
1
), pp.
25
45
.10.1016/S0013-7944(96)00098-7
13.
Irwin
,
G. R.
,
1958
, “
The Dynamic Stress Distribution Surrounding a Running Crack—A Photoelastic Analysis
,”
Proc. SESA
,
16
(
1
), pp.
93
95
.
14.
Ayatollahi
,
M. R.
,
Pavier
,
M. J.
, and
Smith
,
D. J.
,
1998
, “
Determination of T-Stress From Finite Element Analysis for Mode I and Mixed Mode I/II Loading
,”
Int. J. Fract.
,
91
(
3
), pp.
283
298
.10.1023/A:1007581125618
15.
Ayatollahi
,
M. R.
, and
Aliha
,
M. R. M.
,
2009
, “
Mixed Mode Fracture in Soda Lime Glass Analyzed by Using the Generalized MTS Criterion
,”
Int. J. Solids Struct.
,
46
(
2
), pp.
311
321
.10.1016/j.ijsolstr.2008.08.035
16.
Smith
,
D. J.
,
Ayatollahi
,
M. R.
, and
Pavier
,
M. J.
,
2000
, “
The Role of T-Stress in Brittle Fracture for Linear Elastic Materials Under Mixed-Mode Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
2
), pp.
137
150
.10.1046/j.1460-2695.2001.00377.x
17.
Dally
,
J. W.
, and
Sanford
,
R. J.
,
1978
, “
Classification of Stress-Intensity Factors From Isochromatic-Fringe Patterns
,”
Exp. Mech.
,
18
(
12
), pp.
441
448
.10.1007/BF02324279
18.
Guagliano
,
M.
,
Sangirardi
,
M.
,
Sciuccati
,
A.
, and
Zakeri
,
M.
,
2011
, “
Multiparameter Analysis of the Stress Field Around a Crack Tip
,”
Procedia Eng.
,
10
, pp.
2931
2936
.10.1016/j.proeng.2011.04.486
19.
Larisa
,
S.
,
Pavel
,
R.
, and
Pavel
,
L.
,
2016
, “
A Photoelastic Study for Multiparametric Analysis of the Near Crack Tip Stress Field Under Mixed Mode Loading
,”
Procedia Struct. Integr.
,
2
, pp.
1797
1804
.10.1016/j.prostr.2016.06.226
20.
Stepanova
,
L. V.
,
Dolgikh
,
V. S.
, and
Turkova
,
V. A.
,
2017
, “
Digital Photoelasticity for Calculating Coefficients of the Williams Series Expansion in Plate With Two Collinear Cracks Under Mixed Mode Loading
,”
CEUR Workshop Proceedings,
25–27, pp.
200
208
.
21.
Stepanova
,
L. V.
, and
Dolgikh
,
V. S.
,
2018
, “
Interference-Optical Methods in Mechanics for the Multi-Parameter Description of the Stress Fields in the Vicinity of the Crack Tip
,”
J. Phys. Conf. Ser.
,
1096
(
1
), 012117, conf (1).10.1088/1742-6596/1096/1/012117
22.
Vivekanandan
,
A.
, and
Ramesh
,
K.
,
2019
, “
Study of Interaction Effects of Asymmetric Cracks Under Biaxial Loading Using Digital Photoelasticity
,”
Theor. Appl. Fract. Mech.
,
99
, pp.
104
117
.10.1016/j.tafmec.2018.11.011
23.
Ramesh
,
K.
, and
Pramod
,
B. R.
,
1992
, “
Digital Image Processing of Fringe Patterns in Photomechanics
,”
Opt. Eng.
,
31
(
7
), pp.
1487
1498
.10.1117/12.57690
24.
Ramesh
,
K.
, and
Singh
,
R.
,
1995
, “
Comparative Performance Evaluation of Various Fringe Thinning Algorithms in Photomechanics
,”
J. Electron. Imaging
,
4
(
1
), pp.
71
83
.10.1117/12.191333
25.
Neethi Simon
,
B.
, and
Ramesh
,
K.
,
2009
, “
Effect of Error in Crack-Tip Identification on the Photoelastic Evaluation of SIFs of Interface Cracks
,”
Fourth International Conference on Experimental Mechanics (ICEM)
, Singapore, Nov. 18–20.10.1117/12.852519
26.
Ruiz
,
C.
, and
Novelli
,
D.
,
2000
, “
Designing Against Fretting Fatigue in Aeroengines
,”
Eur. Struct. Integr. Soc.
,
26
, pp.
73
95
.10.1016/S1566-1369(00)80043-6
27.
Brown
,
E. N.
,
White
,
S. R.
, and
Sottos
,
N. R.
,
2006
, “
Fatigue Crack Propagation in Microcapsule-Toughened Epoxy
,”
J. Mater. Sci.
,
41
(
19
), pp.
6266
6273
.10.1007/s10853-006-0512-y
28.
ASTM
E606-04, 2004, “
Standard Test Method for Strain-Controlled Fatigue Testing
,” West Conshohocken, PA, Standard No. ASTM E606/E606M.
29.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
519
525
.10.1115/1.3656897
30.
Hussain
,
M. A.
,
Pu
,
S. L.
, and
Underwood
,
J.
,
1974
, “
Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II
,”
American Society for Testing and Materials
,
Philadelphia
, PA, Standard No. ASTM STP 560, pp.
2
28
.
31.
Sih
,
G. C.
,
1974
, “
Strain-Energy-Density Factor Applied to Mixed Mode Crack Problems
,”
Int. J. Fract.
,
10
(
3
), pp.
305
321
.10.1007/BF00035493
You do not currently have access to this content.