Abstract

The great amount of support schemes that initially fueled the fast and often uncontrollable, renewable energy sources (RESs) growth have been strongly reduced or revoked in many countries. Currently, the general trend is to try to equate RESs to traditional power plants. From the energy market point of view, this entails exposing RESs to market competition and mechanics. For example, it could be requested that RESs submit a production schedule in advance and are financially responsible for any deviation from it. This could push the wind farm (WF) operators to make accurate forecasts, thus fostering the electric system resiliency and an efficient use of balancing resources. From the forecasting point of view, this is not a trivial problem since the schedule submission is often due 10–12 h before the actual delivery. Since forecast errors are unavoidable, the submitted schedule could turn out to be infeasible, thus forcing the WF to adopt correcting actions, which are generally costly. This study estimates the revenue reduction that would affect a WF operating in the energy market due to forecast errors. To do this in a realistic way, a case study is selected, and realistic forecast scenarios are generated by using a copula approach. Relevant forecast error features, like autocorrelation and dependency on forecasted power level and forecast lead time, are modeled. The revenue reduction due to balancing actions is calculated on an annual basis, by using typical days. These were derived through a clustering procedure based on production data. Losses ranging from 5% to 35% have been found, depending on the days and market prices. A sensitivity analysis to the costs of balancing actions is performed. The effect of different market architectures and different RESs penetration level is considered in the analysis. Finally, the effectiveness of two techniques (i.e., curtailment and batteries) to reduce forecast error impact in highly penalizing market environments is assessed.

References

1.
International Energy Agency
,
2016
,
World Energy Outlook
201
6
,
OECD
, Paris, France, epub.10.1787/weo-2016-en
2.
U.S. Environmental Protection Agency (EPA)
,
2015
, “
Renewable Energy in the Clean Power Plan
,” accessed Oct. 10, 2019, https://archive.epa.gov/epa/sites/production/files/2015-11/documents/fs-cpp-renewable-energy.pdf
3.
European Commission (Directorate-General for Energy)
,
2019
, “
Clean Energy for All Europeans
,” Eu publications.10.2833/9937
4.
Hemmati
,
R.
,
Azizi
,
N.
,
Shafie-khah
,
M.
, and
Catalão
,
J. P. S.
,
2018
, “
Decentralized Frequency-Voltage Control and Stability Enhancement of Standalone Wind Turbine-Load-Battery
,”
Int. J. Electr. Power Energy Syst.
,
102
, pp.
1
10
.10.1016/j.ijepes.2018.04.021
5.
Uriarte
,
F. M.
,
Smith
,
C.
,
Vanbroekhoven
,
S.
, and
Hebner
,
R. E.
,
2015
, “
Microgrid Ramp Rates and the Inertial Stability Margin
,”
IEEE Trans. Power Syst.
,
30
(
6
), pp.
3209
3216
.10.1109/TPWRS.2014.2387700
6.
Hirth
,
L.
,
Ueckerdt
,
F.
, and
Edenhofer
,
O.
,
2015
, “
Integration Costs Revisited—An Economic Framework for Wind and Solar Variability
,”
Renew. Energy
,
74
, pp.
925
939
.10.1016/j.renene.2014.08.065
7.
Ayodele
,
T. R.
, and
Ogunjuyigbe
,
A. S. O.
,
2015
, “
Mitigation of Wind Power Intermittency: Storage Technology Approach
,”
Renew. Sustain. Energy Rev.
,
44
, pp.
447
456
.10.1016/j.rser.2014.12.034
8.
Joint Reasearch Centre (JRC)
,
2018
,
Renewables in the EU: An Overview of Support Schemes and Measures
, EU Publications.10.2760/52184
9.
European Commission
,
2013
, “
European Commission Guidance for the Design of Renewables Support Schemes
,” Brussels, Belgium, accessed Oct. 10, 2019, https://ec.europa.eu/energy/sites/ener/files/com_2013_public_intervention_swd04_en.pdf
10.
Agency for the Cooperation of Energy Regulators (ACER)
,
2014
, “
Opinion of the Agency for the Cooperation of Energy Regulators No. 07/2014
,” accessed Oct. 10, 2019, https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Opinions/Opinions/ACER Opinion 07-2014.pdf
11.
Huntington
,
S. C.
,
Rodilla
,
P.
,
Herrero
,
I.
, and
Batlle
,
C.
,
2017
, “
Revisiting Support Policies for RES-E Adulthood: Towards Market Compatible Schemes
,”
Energy Policy
,
104
, pp.
474
483
.10.1016/j.enpol.2017.01.006
12.
Frate
,
G. F.
,
Peña Carro
,
P.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2018
, “
On the Suitability of a Battery Energy Storage Use in a Wind Farm
,”
Proceedings of the ECOS 2018: 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.
, Guimaraes, Portugal.
13.
Yekini Suberu
,
M.
,
Wazir Mustafa
,
M.
, and
Bashir
,
N.
,
2014
, “
Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency
,”
Renew. Sustain. Energy Rev.
,
35
, pp.
499
514
.10.1016/j.rser.2014.04.009
14.
Frate
,
G. F.
,
Carro
,
P. P.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2018
, “
Techno-Economic Sizing of a Battery Energy Storage Coupled to a Wind Farm: An Italian Case Study
,”
Energy Procedia
,
148
, pp.
447
454
.10.1016/j.egypro.2018.08.119
15.
Bitar
,
E. Y.
,
Rajagopal
,
R.
,
Khargonekar
,
P. P.
,
Poolla
,
K.
, and
Varaiya
,
P.
,
2012
, “
Bringing Wind Energy to Market
,”
IEEE Trans. Power Syst.
,
27
(
3
), pp.
1225
1235
.10.1109/TPWRS.2012.2183395
16.
IEA–RETD
,
2015
, “
Integration of Variable Renewable Electricity Sources in Electricity Systems
,” IEA Implementing Agreement for Renewable Energy Technology Deployment (IEA-RETD), Utrecht, accessed Oct. 10, 2019, http://iea-retd.org/wp-content/uploads/2015/01/Report-Volume-I-Main-Report.pdf
17.
Holttinen
,
H.
,
Miettinen
,
J. J.
,
Couto
,
A.
,
Algarvio
,
H.
,
Rodrigues
,
L.
, and
Estanqueiro
,
A.
,
2016
, “
Wind Power Producers in Shorter Gate Closure Markets and Balancing Markets
,”
International Conference on the European Energy Market (EEM)
, Porto, Portugal, 6–9 June, pp.
1
5
.
18.
Pinson
,
P.
,
Chevallier
,
C.
, and
Kariniotakis
,
G. N.
,
2007
, “
Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power
,”
IEEE Trans. Power Syst.
,
22
(
3
), pp.
1148
1156
.10.1109/TPWRS.2007.901117
19.
Heredia
,
F.-J.
,
Cuadrado
,
M. D.
, and
Corchero
,
C.
,
2018
, “
On Optimal Participation in the Electricity Markets of Wind Power Plants With Battery Energy Storage Systems
,”
Comput. Oper. Res.
,
96
, pp.
316
329
.10.1016/j.cor.2018.03.004
20.
Alessandrini
,
S.
,
Davò
,
F.
,
Sperati
,
S.
,
Benini
,
M.
, and
Delle Monache
,
L.
,
2014
, “
Comparison of the Economic Impact of Different Wind Power Forecast Systems for Producers
,”
Adv. Sci. Res.
,
11
(
1
), pp.
49
53
.10.5194/asr-11-49-2014
21.
Afshar
,
K.
,
Ghiasvand
,
F. S.
, and
Bigdeli
,
N.
,
2018
, “
Optimal Bidding Strategy of Wind Power Producers in Pay-as-Bid Power Markets
,”
Renew. Energy
,
127
, pp.
575
586
.10.1016/j.renene.2018.05.015
22.
Clò
,
S.
,
Cataldi
,
A.
, and
Zoppoli
,
P.
,
2015
, “
The Merit-Order Effect in the Italian Power Market: The Impact of Solar and Wind Generation on National Wholesale Electricity Prices
,”
Energy Policy
,
77
, pp.
79
88
.10.1016/j.enpol.2014.11.038
23.
Pinson
,
P.
,
Madsen
,
H.
,
Nielsen
,
H. A.
,
Papaefthymiou
,
G.
, and
Klöckl
,
B.
,
2009
, “
From Probabilistic Forecasts to Statistical Scenarios of Short-Term Wind Power Production
,”
Wind Energy
,
12
(
1
), pp.
51
62
.10.1002/we.284
24.
Wang
,
Z.
,
Shen
,
C.
, and
Liu
,
F.
,
2018
, “
A Conditional Model of Wind Power Forecast Errors and Its Application in Scenario Generation
,”
Appl. Energy
,
212
, pp.
771
785
.10.1016/j.apenergy.2017.12.039
25.
Draxl
,
C.
,
Clifton
,
A.
,
Hodge
,
B. M.
, and
McCaa
,
J.
,
2015
, “
The Wind Integration National Dataset (WIND) Toolkit
,”
Appl. Energy
,
151
, pp.
355
366
.10.1016/j.apenergy.2015.03.121
26.
Ackooij
,
W. V.
,
Lopez
,
I. D.
, and
Frangioni
,
A.
,
2018
, “
Large-Scale Unit Commitment Under Uncertainty: An Updated Literature Survey
,”
Ann. Oper. Res.
,
271
(1), pp. 11–85.
27.
Wang
,
C.
,
Liang
,
Z.
,
Liang
,
J.
,
Teng
,
Q.
,
Dong
,
X.
, and
Wang
,
Z.
,
2018
, “
Modeling the Temporal Correlation of Hourly Day-Ahead Short-Term Wind Power Forecast Error for Optimal Sizing Energy Storage System
,”
Int. J. Electr. Power Energy Syst.
,
98
, pp.
373
381
.10.1016/j.ijepes.2017.12.012
28.
Morales
,
J. M. M.
,
Mínguez
,
R.
, and
Conejo
,
A. J. J.
,
2010
, “
A Methodology to Generate Statistically Dependent Wind Speed Scenarios
,”
Appl. Energy
,
87
(
3
), pp.
843
855
.10.1016/j.apenergy.2009.09.022
29.
Feng
,
Y.
,
Gade
,
D.
,
Ryan
,
S. M.
,
Wets
,
R. J.
, and
Woodruff
,
D. L.
,
2013
, “
A New Approximation Method for Generating Day-Ahead Load Scenarios
,”
IEEE
Power and Energy Society General Meeting, Vancouver, BC, Canada, July 21–25, pp.
1
5
.10.1109/PESMG.2013.6672564
30.
Staid
,
A.
,
Watson
,
J.-P.
,
Wets
,
R. J. B.
, and
Woodruff
,
D. L.
,
2017
, “
Generating Short-Term Probabilistic Wind Power Scenarios Via Nonparametric Forecast Error Density Estimators
,”
Wind Energy
,
20
(
12
), pp.
1911
1925
.10.1002/we.2129
31.
Feng
,
Y.
,
Rios
,
I.
,
Ryan
,
S. M.
,
Spürkel
,
K.
,
Watson
,
J.-P.
,
Wets
,
R. J.-B.
, and
Woodruff
,
D. L.
,
2015
, “
Toward Scalable Stochastic Unit Commitment. Part 1: Load Scenario Generation
,”
Energy Syst.
,
6
(
3
), pp.
309
329
.10.1007/s12667-015-0146-8
32.
Rios
,
I.
,
Wets
,
R. J. B.
, and
Woodruff
,
D. L.
,
2015
, “
Multi-Period Forecasting and Scenario Generation With Limited Data
,”
Comput. Manag. Sci.
,
12
(
2
), pp.
267
295
.10.1007/s10287-015-0230-5
33.
Leng
,
H.
,
Li
,
X.
,
Zhu
,
J.
,
Tang
,
H.
,
Zhang
,
Z.
, and
Ghadimi
,
N.
,
2018
, “
A New Wind Power Prediction Method Based on Ridgelet Transforms, Hybrid Feature Selection and Closed-Loop Forecasting
,”
Adv. Eng. Inf.
,
36
, pp.
20
30
.10.1016/j.aei.2018.02.006
34.
Zhang
,
Z.
,
Member
,
S.
,
Sun
,
Y.
,
Member
,
S.
,
Gao
,
D. W.
,
Lin
,
J.
, and
Cheng
,
L.
,
2013
, “
A Versatile Probability Distribution Model for Wind Power Forecast Errors and Its Application in Economic Dispatch
,”
IEEE Trans. Power Syst.
,
28
(
3
), pp.
3114
3125
.10.1109/TPWRS.2013.2249596
35.
Menemenlis
,
N.
,
Huneault
,
M.
, and
Robitaille
,
A.
,
2012
, “
Computation of Dynamic Operating Balancing Reserve for Wind Power Integration for the Time-Horizon 1-48 Hours
,”
IEEE Trans. Sustain. Energy
,
3
(
4
), pp.
692
701
.10.1109/TSTE.2011.2181878
36.
Tan
,
W.-S.
,
Shaaban
,
M.
, and
Abdullah
,
M. P.
,
2017
, “
Chance-Constrained Programming for Day-Ahead Scheduling of Variable Wind Power Amongst Conventional Generation Mix and Energy Storage
,”
IET Renew. Power Gener.
,
11
(
14
), pp.
1785
1793
.10.1049/iet-rpg.2016.0875
37.
Wu
,
J.
,
Zhang
,
B.
,
Li
,
H.
,
Li
,
Z.
,
Chen
,
Y.
, and
Miao
,
X.
,
2014
, “
Statistical Distribution for Wind Power Forecast Error and Its Application to Determine Optimal Size of Energy Storage System
,”
Int. J. Electr. Power Energy Syst.
,
55
, pp.
100
107
.10.1016/j.ijepes.2013.09.003
38.
Das
,
S.
,
Abraham
,
A.
, and
Konar
,
A.
,
2009
, “
Automatic Hard Clustering Using Improved Differential Evolution Algorithm
,”
Stud. Comput. Intell.
,
178
(
1
), pp.
137
174
.10.1007/978-3-540-93964-1_4
39.
Crespo-Vazquez
,
J. L.
,
Carrillo
,
C.
,
Diaz-Dorado
,
E.
,
Martinez-Lorenzo
,
J. A.
, and
Noor-E-Alam
,
M.
,
2018
, “
Evaluation of a Data Driven Stochastic Approach to Optimize the Participation of a Wind and Storage Power Plant in Day-Ahead and Reserve Markets
,”
Energy
,
156
, pp.
278
291
.10.1016/j.energy.2018.04.185
40.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
569
596
.10.1016/j.rser.2014.10.011
You do not currently have access to this content.