Abstract

Understanding the behavior of spark plasma and flame initiation in internal combustion engines leads to improvement in fuel economy and exhaust emissions. This paper experimentally investigated spark plasma stretching and cycle-to-cycle variations under various engine speed, load, and air–fuel mixtures using natural luminosity images. Natural luminosity images of combustion in an IC engine provide information about the flame speed, rate of energy release, and combustion stability. Binarization of the intensity images has been a desirable method for detecting flame front and studying flame propagation in combustors. However, binarization can cause a loss of information in the images. To study spark plasma stretching, the location of maximum intensity was tracked and compared to the trajectory of the flame centroid in binarized images as a representative for bulk flow motion. Analysis showed comparable trends between the trajectories of the flame centroid and spark stretching. From three air–fuel mixtures, the spark plasma for the lean mixture appeared to be more sensitive to the stretching. In addition, this research investigated combustion variations using two-dimensional (2D) intensity images and compared the results to coefficient of variation (COV) of indicated mean effective pressure (IMEP) computed from in-cylinder pressure data. The results revealed a good correlation between the variations of the luminosity field during the main phase of combustion and the COV of IMEP. However, during the ignition and very early flame kernel formation, utilizing the luminosity field was more powerful than in-cylinder pressure-related parameters to capture combustion variations.

References

1.
Merzkirch
,
W.
,
1974
, “
Generalized Analysis of Shearing Interferometers as Applied for Gas Dynamic Studies
,”
Appl. Opt.
,
13
(
2
), pp.
409
413
.10.1364/AO.13.000409
2.
Lauterborn
,
W.
, and
Vogel
,
A.
,
1984
, “
Modern Optical Techniques in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
223
244
.10.1146/annurev.fl.16.010184.001255
3.
Siahcheshm
,
P.
,
Goharpey
,
F.
, and
Foudazi
,
R.
,
2018
, “
Droplet Retraction in the Presence of Nanoparticles With Different Surface Modifications
,”
Rheol. Acta
,
57
(
11
), pp.
1
15
.10.1007/s00397-018-1105-9
4.
Zhang
,
J.
,
Jing
,
W.
, and
Fang
,
T.
,
2012
, “
High Speed Imaging of OH* Chemiluminescence and Natural Luminosity of Low Temperature Diesel Spray Combustion
,”
Fuel
,
99
, pp.
226
234
.10.1016/j.fuel.2012.04.031
5.
Sick
,
V.
,
2013
, “
High Speed Imaging in Fundamental and Applied Combustion Research
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3509
3530
.10.1016/j.proci.2012.08.012
6.
Faraday
,
M.
,
1988
,
Faraday's Chemical History of a Candle: Twenty Two Experiments and Six Classic Lectures
,
Chicago Review Press
,
Chicago, IL
.
7.
Wolfrum
,
J.
,
1998
, “
Lasers in Combustion: From Basic Theory to Practical Devices
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1
41
.10.1016/S0082-0784(98)80387-1
8.
Eckbreth
,
A. C.
,
1996
,
Laser Diagnostics for Combustion Temperature and Species
, Vol.
3
,
CRC Press
, Boca Raton, FL.
9.
Jay Barker
,
J.
, and
Kohse-Hoinghaus
,
K.
, (eds.),
2002
,
Applied Combustion Diagnostics
,
Taylor & Francis
, New York.
10.
Kohse-Höinghaus
,
K.
,
Barlow
,
R. S.
,
Aldén
,
M.
, and
Wolfrum
,
J.
,
2005
, “
Combustion at the Focus: Laser Diagnostics and Control
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
89
123
.10.1016/j.proci.2004.08.274
11.
Aldén
,
M.
,
Bood
,
J.
,
Li
,
Z.
, and
Richter
,
M.
,
2011
, “
Visualization and Understanding of Combustion Processes Using Spatially and Temporally Resolved Laser Diagnostic Techniques
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
69
97
.10.1016/j.proci.2010.09.004
12.
Hanson
,
R. K.
,
2011
, “
Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Energy Systems
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1
40
.10.1016/j.proci.2010.09.007
13.
Günter
,
P. M.
,
Schwarz
,
C.
, and
Teichmann
,
R.
, (eds.),
2011
,
Combustion Engines Development: Mixture Formation, Combustion, Emissions and Simulation
,
Springer Science & Business Media
, Berlin.
14.
Xiong
,
Y.
,
Roberts
,
W. L.
,
Drake
,
M. C.
, and
Fansler
,
T. D.
,
2001
, “
Investigation of Pre-Mixed Flame-Kernel/Vortex Interactions Via High-Speed Imaging
,”
Combust. Flame
,
126
(
4
), pp.
1827
1844
.10.1016/S0010-2180(01)00293-0
15.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T.-W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model SparkCIMM—Part A: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
.10.1016/j.combustflame.2011.03.012
16.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T.-W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model SparkCIMM—Part B: Importance of Molecular Fuel Properties in Early Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2245
2260
.10.1016/j.combustflame.2011.04.003
17.
Senda
,
J.
,
Choi
,
D.
,
Iwamuro
,
M.
,
Fujimoto
,
H.
, and
Asai
,
G.
,
2002
, “
Experimental Analysis on Soot Formation Process in DI Diesel Combustion Chamber by Use of Optical Diagnostics
,”
SAE
Paper No. 2002-01-0893.10.4271/2002-01-0893
18.
Aleiferis
,
P. G.
,
Serras-Pereira
,
J.
, and
Richardson
,
D.
,
2013
, “
Characterisation of Flame Development With Ethanol, Butanol, Iso-Octane, Gasoline and Methane in a Direct-Injection Spark-Ignition Engine
,”
Fuel
,
109
, pp.
256
278
.10.1016/j.fuel.2012.12.088
19.
Salazar
,
V.
, and
Kaiser
,
S.
,
2011
, “
Influence of the Flow Field on Flame Propagation in a Hydrogen-Fueled Internal Combustion Engine
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2376
2394
.10.4271/2011-24-0098
20.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,” Atmospheric Turbulence and Radio Wave Propagation, Nauka, Moscow, Russia, pp.
166
178
.
21.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
22.
Fogleman
,
M.
,
Lumley
,
J.
,
Rempfer
,
D.
, and
Haworth
,
D.
,
2004
, “
Application of the Proper Orthogonal Decomposition to Datasets of Internal Combustion Engine Flows
,”
J. Turbul.
,
5
(
23
), pp.
1
3
.10.1088/1468-5248/5/1/023
23.
Chen
,
H.
,
Reuss
,
D. L.
,
Hung
,
D. L.
, and
Sick
,
V.
,
2013
, “
A Practical Guide for Using Proper Orthogonal Decomposition in Engine Research
,”
Int. J. Engine Res.
,
14
(
4
), pp.
307
319
.10.1177/1468087412455748
24.
Bizon
,
K.
,
Continillo
,
G.
,
Mancaruso
,
E.
,
Merola
,
S. S.
, and
Vaglieco
,
B. M.
,
2010
, “
POD-Based Analysis of Combustion Images in Optically Accessible Engines
,”
Combust. Flame
,
157
(
4
), pp.
632
640
.10.1016/j.combustflame.2009.12.013
25.
Afkhami
,
B.
,
Wang
,
Y.
,
Miers
,
S. A.
, and
Naber
,
J. D.
,
2017
, “
Experimental Study of Flame Stretch Under Engine-Like Conditions
,”
ASME
Paper No. ICEF2017-3636.10.1115/ICEF2017-3636
26.
Sforza
,
L.
,
Lucchini
,
T.
,
Onorati
,
A.
,
Zhu
,
X.
, and
Lee
,
S.-Y.
,
2017
, “
Modeling Ignition and Premixed Combustion Including Flame Stretch Effects
,”
SAE
Paper No. 2017-01-0553.10.4271/2017-01-0553
27.
Dahms
,
R.
,
Fansler
,
T. D.
,
Drake
,
M. C.
,
Kuo
,
T.-W.
,
Lippert
,
A. M.
, and
Peters
,
N.
,
2009
, “
Modeling Ignition Phenomena in Spray-Guided Spark-Ignited Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2743
2750
.10.1016/j.proci.2008.05.052
28.
Veynante
,
D.
,
Lodato
,
G.
,
Domingo
,
P.
,
Vervisch
,
L.
, and
Hawkes
,
E. R.
,
2010
, “
Estimation of Three-Dimensional Flame Surface Densities From Planar Images in Turbulent Premixed Combustion
,”
Exp. Fluids
,
49
(
1
), pp.
267
278
.10.1007/s00348-010-0851-y
29.
Zhang
,
M.
,
Wang
,
J.
,
Jin
,
W.
,
Huang
,
Z.
,
Kobayashi
,
H.
, and
Ma
,
L.
,
2015
, “
Estimation of 3D Flame Surface Density and Global Fuel Consumption Rate From 2D PLIF Images of Turbulent Premixed Flame
,”
Combust. Flame
,
162
(
5
), pp.
2087
2097
.10.1016/j.combustflame.2015.01.007
30.
Rimmer
,
J. E. T.
,
Long
,
E. J.
,
Garner
,
C. P.
,
Hargrave
,
G. K.
,
Richardson
,
D.
, and
Wallace
,
S.
,
2009
, “
The Influence of Single and Multiple Injection Strategies on in-Cylinder Flow and Combustion Within a DISI Engine
,”
SAE
Paper No. 2009-01-0660.10.4271/2009-01-0660
31.
Davy
,
M. H.
,
Williams
,
P. A.
, and
Anderson
,
R. W.
,
2000
, “
Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study Using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques
,”
SAE
Paper No. 2000-01-1904.10.4271/2000-01-1904
32.
Rottenkolber
,
G.
,
Gindele
,
J.
,
Raposo
,
J.
,
Dullenkopf
,
K.
,
Hentschel
,
W.
,
Wittig
,
S.
,
Spicher
,
U.
, and
Merzkirch
,
W.
,
2002
, “
Spray Analysis of a gasoline direct Injector by Means of Two-Phase PIV
,”
Exp. Fluids
,
32
(
6
), pp.
710
721
.10.1007/s00348-002-0441-8
33.
Wang
,
Y.
,
Zhang
,
J.
,
Wang
,
X.
,
Dice
,
P.
,
Shahbakhti
,
M.
,
Naber
,
J.
,
Czekala
,
M.
,
Qu
,
Q.
, and
Huberts
,
G.
,
2017
, “
Investigation of Impacts of Spark Plug Orientation on Early Flame Development and Combustion in a DI Optical Engine
,”
SAE Int. J. Engines
,
10
(
3
), pp.
995
1010
.10.4271/2017-01-0680
34.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
, McGraw-Hill, New York.
35.
Matalon
,
M.
,
Cui
,
C.
, and
Bechtold
,
J. K.
,
2003
, “
Hydrodynamic Theory of Premixed Flames: Effects of Stoichiometry, Variable Transport Coefficients and Arbitrary Reaction Orders
,”
J. Fluid Mech.
,
487
, pp.
179
210
.10.1017/S0022112003004683
36.
Zeng
,
W.
,
Keum
,
S.
,
Kuo
,
T.-W.
, and
Sick
,
V.
,
2019
, “
Role of Large Scale Flow Features on Cycle-to-Cycle Variations of Spark-Ignited Flame-Initiation and Its Transition to Turbulent Combustion
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4945
4953
.10.1016/j.proci.2018.07.081
37.
Schiffmann
,
P.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2018
, “
Empirical Investigation of Spark-Ignited Flame-Initiation Cycle-to-Cycle Variability in a Homogeneous Charge Reciprocating Engine
,”
Int. J. Engine Res.
,
19
(
5
), pp.
491
508
.10.1177/1468087417720558
38.
Aleiferis
,
P. G.
,
Serras-Pereira
,
J.
,
Van Romunde
,
Z.
,
Caine
,
J.
, and
Wirth
,
M.
,
2010
, “
Mechanisms of Spray Formation and Combustion From a Multi-Hole Injector With E85 and Gasoline
,”
Combust. Flame
,
157
(
4
), pp.
735
756
.10.1016/j.combustflame.2009.12.019
39.
Aleiferis
,
P. G.
,
Taylor
,
A. M. K. P.
,
Ishii
,
K.
, and
Urata
,
Y.
,
2004
, “
The Nature of Early Flame Development in a Lean-Burn Stratified-Charge Spark-Ignition Engine
,”
Combust. Flame
,
136
(
3
), pp.
283
302
.10.1016/j.combustflame.2003.08.011
40.
Roudnitzky
,
S.
,
Druault
,
P.
, and
Guibert
,
P.
,
2006
, “
Proper Orthogonal Decomposition of in-Cylinder Engine Flow Into Mean Component, Coherent Structures and Random Gaussian Fluctuations
,”
J. Turbul.
,
7
, p.
N70
.10.1080/14685240600806264
41.
Afkhami
,
B.
,
Zhao
,
Y.
, and
Miers
,
S.
,
2016
, “
Carbureted SI Engine Air Flow Measurements
,”
SAE
Paper No. 2016-01-1082.10.4271/2016-01-1082
42.
Johnson
,
D.
,
Darzi
,
M.
,
Ulishney
,
C.
,
Bade
,
M.
, and
Zamani
,
N.
,
2017
, “
Methods to Improve Combustion Stability, Efficiency, and Power Density of a Small, Port-Injected, Spark-Ignited, Two-Stroke Natural Gas Engine
,”
ASME
Paper No. ICEF2017-3557.10.1115/ICEF2017-3557
43.
Ansari
,
E.
,
Poorghasemi
,
K.
,
Irdmousa
,
B. K.
,
Shahbakhti
,
M.
, and
Naber
,
J.
,
2016
, “
Efficiency and Emissions Mapping of a Light Duty Diesel-Natural Gas Engine Operating in Conventional Diesel and RCCI Modes
,”
SAE
Paper No. 2016-01-2309.10.4271/2016-01-2309
44.
Shahsavan
,
M.
, and
Mack
,
J. H.
,
2018
, “
Numerical Study of a Boosted HCCI Engine Fueled With n-Butanol and Isobutanol
,”
Energy Convers. Manage.
,
157
, pp.
28
40
.10.1016/j.enconman.2017.11.063
You do not currently have access to this content.