Abstract

Dynamic force coefficients are presented from experimental results of a radial gas bearing with hermetically sealed squeeze film dampers (HSFDs) in the bearing support. HSFDs are a relatively new technology aimed to increase damping levels in gas bearings while sustaining an oil-free bearing sump. Past HSFD designs proved bulky and contained many components making it difficult to employ in size-limited environments such as jet engines, while the diffusion bonded bearing discussed in this paper provides a compact integral design. Details of the design are found in a companion paper by Ertas (Ertas, B. H., 2019, “Compliant Hybrid Gas Bearing Using Integral Hermetically-Sealed Squeeze Film Dampers,” ASME Paper No. GT2018-76312). Test results for a 3 in. (76.2 mm) diameter bearing using a test rig providing static loads up to 80 lbs (356 N), controlled-dynamic orbital motion, and speeds up to 27 krpm are shown. Results include frequency- and speed-dependent direct and cross-coupled rotordynamic force coefficients. Dynamic testing showed little dependence on rotor speed or static load and exhibited frequency dependency at lower excitation frequencies. Cross-coupled terms are generally an order of magnitude lower than direct terms. Results show the direct stiffness coefficients increasing with frequency, while direct damping decays radically with frequency. Comparison of the overall gas bearing coefficients with the companion paper (Ertas, B. H., 2019, “Compliant Hybrid Gas Bearing Using Integral Hermetically-Sealed Squeeze Film Dampers,” ASME Paper No. GT2018-76312), showing bearing support coefficients, reveals a drastic reduction in damping when engaging the gas film. The results also indicate that the bearing can withstand vibration levels representative of a large rotor system critical speed at lower excitation frequencies.

References

1.
Allison
,
T. C.
,
Moore
,
J. J.
,
Wilkes
,
J. C.
, and
Brun
,
K.
,
2017
, “
Turbomachinery Overview for Supercritical CO2 Power Cycles
,”
46th Turbomachinery Symposium
, Houston, TX, Sept. 11–14. http://hdl.handle.net/1969.1/166785
2.
Kalra
,
C. J.
,
Hofer
,
D.
,
Sevincer
,
E.
,
Moore
,
J.
, and
Brun
,
K.
,
2014
, “
Development of High Efficiency Hot Gas Turbo-Expander for Optimized CSP Supercritical CO2 Power Block Operation
,”
Fourth International Symposium—Supercritical CO2 Power Cycles (sCO2)
, Pittsburgh, PA, Sept. 9–10, pp.
1
11
.
3.
Wygant
,
K.
,
Allison
,
T.
, and
Pelton
,
R.
,
2018
, “
Overview of Turbomachinery for Super-Critical CO2 Applications
,”
Asia Turbomachinery & Pump Symposia
, Singapore, Feb. 22–25.http://hdl.handle.net/1969.1/172452
4.
Heshmat
,
H.
,
Walton
,
J. F.
, and
Córdova
,
J. L.
,
2018
, “
Technology Readiness of 5th and 6th Generation Compliant Foil Bearing for 10 MWE S-CO2 Turbomachinery Systems
,” Sixth International Supercritical CO2 Power Cycles Symposium, Pittsburg, PA, Mar. 27–29.
5.
Conboy
,
T. M.
,
Wright
,
S. A.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G. E.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.10.1115/1.4007199
6.
Walker
,
M. S.
,
Fleming
,
D. D.
, and
Pasch
,
J. J.
,
2018
, “
Gas Foil Bearing Coating Behavior in Environments Relevant to S-CO2 Power System Turbomachinery
,” Sixth International Supercritical CO2 Power Cycles Symposium, Pittsburg, PA, Mar. 27–29.
7.
Kim
,
D.
, and
Zimbru
,
G.
,
2012
, “
Start-Stop Characteristics and Thermal Behavior of a Large Hybrid Airfoil Bearing for Aero-Propulsion Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032502
.10.1115/1.4004487
8.
San Andres
,
L.
,
Chirathadam
,
T. A.
, and
Kim
,
T. H.
,
2010
, “
Measurement of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032503
.10.1115/1.3159379
9.
Feng
,
K.
,
Liu
,
Y.
,
Zhao
,
X.
, and
Liu
,
W.
,
2015
, “
Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing
,”
ASME J. Tribol.
,
138
(
2
), p.
021702
.10.1115/1.4031496
10.
Fleming
,
D. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
,
Rochau
,
G. A.
,
Fuller
,
R. L.
,
Holschuh
,
T. V.
, and
Wright
,
S. A.
,
2013
, “
Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Commercialization
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2013-9106.
11.
Childs
,
D. W.
,
2013
,
Turbomachinery Rotordynamics With Case Studies
,
Minter Spring Publishing
, Wellborn, TX.
12.
Ertas
,
B.
,
2009
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.10.1115/1.2967476
13.
Delgado
,
A.
,
2015
, “
Experimental Identification of Dynamic Force Coefficients for a 110 MM Compliantly Damped Hybrid Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072502
.10.1115/1.4029203
14.
Ertas
,
B.
, and
Delgado
,
A.
,
2018
, “
Hermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022503
.10.1115/1.4041520
15.
Ertas
,
B.
, and
Delgado
,
A.
,
2018
, “
Compliant Hybrid Gas Bearing Using Modular Hermetically-Sealed Squeeze Film Dampers
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022504
.10.1115/1.4041310
16.
Delgado
,
A.
, and
Ertas
,
B.
,
2018
, “
Dynamic Characterization of a Novel Externally Pressurized Compliantly Damped Gas-Lubricated Bearing With Hermetically Sealed Squeeze Film Damper Modules
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021028
.10.1115/1.4041311
17.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Moore
,
J. J.
,
2017
, “
Dynamic Characterization of an Integral Squeeze Film Bearing Support Damper for a Super-Critical CO2 Expander
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052501
.10.1115/1.4038121
18.
Ertas
,
B.
, and
Delgado
,
A.
,
2019
, “
Compliant Hybrid Gas Bearing Using Integral Hermetically-Sealed Squeeze Film Dampers
,”
ASME
Paper No. GT2018-76312.10.1115/GT2018-76312
19.
Childs
,
D. W.
, and
Hale
,
K.
,
1994
, “
A Test Apparatus and Facility to Identify the Rotordynamic Coefficients of High Speed Hydrostatic Bearings
,”
ASME J. Tribol.
,
116
(
2
), pp.
337
343
.10.1115/1.2927226
You do not currently have access to this content.