Abstract

A twin-fluid atomizer configuration is simulated by means of the two-dimensional (2D) weakly compressible smoothed particle hydrodynamics (SPH) method and compared to experiments. The gas-to-liquid ratio (GLR), the momentum flux ratio, and the velocity ratio are set constant for different ambient pressures, which lead to different gaseous flow sections. The objectives of this study are (i) to investigate the effect of ambient pressure at constant global parameters and (ii) to verify the capability of 2D SPH to qualitatively predict the proper disintegration mechanism and to recover the correct evolution of the spray characteristics. The setup consists of an axial liquid jet of water fragmented by a coflowing high-speed air stream (Ug = 80 m/s) in a pressurized atmosphere up to 16 bar. The results are compared to the experiment and presented in terms of (i) mean velocity profiles, (ii) drop size distributions, and (iii) Sauter mean diameter (SMD) of the spray. It is found that there exists an optimal pressure to minimize the mean size of the spray droplets. Finally, two new quantities related to atomization are presented: (i) the breakup activity that quantifies the number of breakup events per time and volume unit and (ii) the fragmentation spectrum of the whole breakup chain, which characterize the cascade phenomenon in terms of probability. The breakup activity confirms the presence of the optimal pressure, and the fragmentation spectrum gives information on the type of breakup, depending on the ambient pressure.

References

1.
Dahmen
,
N.
,
Dinjus
,
E.
,
Kolb
,
T.
,
Arnold
,
U.
,
Leibold
,
H.
, and
Stahl
,
R.
,
2012
, “
State of the Art of the Bioliq Process for Synthetic Biofuels Production
,”
Environ. Prog. Sustainable Energy
,
31
(
2
), pp.
176
181
.10.1002/ep.10624
2.
Jakobs
,
T.
,
Djordjevic
,
N.
,
Fleck
,
S.
,
Mancini
,
M.
,
Weber
,
R.
, and
Kolb
,
T.
,
2012
, “
Gasification of High Viscous Slurry R&D on Atomization and Numerical Simulation
,”
Appl. Energy
,
93
, pp.
449
456
.10.1016/j.apenergy.2011.12.026
3.
Zheng
,
J.-L.
,
Zhu
,
Y.-H.
,
Zhu
,
M.-Q.
,
Wu
,
H.-T.
, and
Sun
,
R.-C.
,
2018
, “
Bio-Oil Gasification Using Air-Steam as Gasifying Agents in an Entrained Flow Gasifier
,”
Energy
,
142
, pp.
426
435
.10.1016/j.energy.2017.10.031
4.
Fleck
,
S.
,
Santo
,
U.
,
Hotz
,
C.
,
Jakobs
,
T.
,
Eckel
,
G.
,
Mancini
,
M.
,
Weber
,
R.
, and
Kolb
,
T.
,
2018
, “
Entrained Flow Gasification—Part 1: Gasification of Glycol in an Atmospheric-Pressure Experimental Rig
,”
Fuel
,
217
, pp.
306
319
.10.1016/j.fuel.2017.12.077
5.
Mancini
,
M.
,
Alberti
,
M.
,
Dammann
,
M.
,
Santo
,
U.
,
Eckel
,
G.
,
Kolb
,
T.
, and
Weber
,
R.
,
2018
, “
Entrained Flow Gasification—Part 2: Mathematical Modeling of the Gasifier Using RANS Method
,”
Fuel
,
225
, pp.
596
611
.10.1016/j.fuel.2018.03.100
6.
Eckel
,
G.
,
Clercq
,
P. L.
,
Kathrotia
,
T.
,
Saenger
,
A.
,
Fleck
,
S.
,
Mancini
,
M.
,
Kolb
,
T.
, and
Aigner
,
M.
,
2018
, “
Entrained Flow Gasification—Part 3: Insight Into the Injector Near-Field by Large Eddy Simulation With Detailed Chemistry
,”
Fuel
,
223
, pp.
164
178
.10.1016/j.fuel.2018.02.176
7.
Sänger
,
A.
,
Jakobs
,
T.
,
Djordjevic
,
N.
, and
Kolb
,
T.
,
2015
, “
Experimental Investigation on the Influence of Ambient Pressure on Twin-Fluid Atomization Of liquids With Various Viscosities
,”
Triennial International Conference on Liquid Atomization and Spray System
(
ICLASS
), Tainan, Taiwan, Aug. 23–27.https://publikationen.bibliothek.kit.edu/1000063628
8.
Chaussonnet
,
G.
,
Koch
,
R.
,
Bauer
,
H.-J.
,
Sänger
,
A.
,
Jakobs
,
T.
, and
Kolb
,
T.
,
2018
, “
Smoothed Particle Hydrodynamics Simulation of an Air-Assisted Atomizer Operating at High Pressure: Influence of Non-Newtonian Effects
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061301
.10.1115/1.4038753
9.
Gingold
,
R.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics-Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
10.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.10.1006/jcph.1994.1034
11.
Koch
,
R.
,
Braun
,
S.
,
Wieth
,
L.
,
Chaussonnet
,
G.
,
Dauch
,
T.
, and
Bauer
,
H.-J.
,
2017
, “
Prediction of Primary Atomization Using Smoothed Particle Hydrodynamics
,”
Eur. J. Mech.-B
,
61
(
Pt. 2
), pp.
271
278
.10.1016/j.euromechflu.2016.10.007
12.
Pereira
,
G. G.
,
Cleary
,
P. W.
, and
Serizawa
,
Y.
,
2018
, “
Prediction of Fluid Flow Through and Jet Formation From a High Pressure Nozzle Using Smoothed Particle Hydrodynamics
,”
Chem. Eng. Sci.
,
178
, pp.
12
26
.10.1016/j.ces.2017.12.033
13.
Dumouchel
,
C.
,
2008
, “
On the Experimental Investigation on Primary Atomization of Liquid Streams
,”
Exp. Fluids
,
45
(
3
), pp.
371
422
.10.1007/s00348-008-0526-0
14.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), pp.
1703
1759
.10.1088/0034-4885/68/8/R01
15.
Takeda
,
H.
,
Miyama
,
S.
, and
Sekiya
,
M.
,
1994
, “
Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics
,”
Prog. Theor. Phys.
,
92
(
5
), pp.
939
960
.10.1143/ptp/92.5.939
16.
Braun
,
S.
,
Wieth
,
L.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2015
, “
A Framework for Permeable Boundary Conditions in SPH: Inlet, Outlet, Periodicity
,”
Proceedings of the Tenth International SPHERIC Workshop
, Parma, Italy, June 16–18, pp.
308
315
.
17.
Lee
,
M.
, and
Cho
,
Y.
,
2011
, “
On the Migration of Smooth Particle Hydrodynamic Formulation in Cartesian Coordinates to the Axisymmetric Formulation
,”
J. Strain Anal. Eng. Des.
,
46
(
8
), pp.
879
886
.10.1177/0309324711409656
18.
Wang
,
J.
,
Chan
,
D.
, and
Zhang
,
J.
,
2016
, “
Stable Axisymmetric SPH Formulation With No Axis Singularity
,”
Int. J. Numer. Anal. Methods Geomech.
,
40
(
7
), pp.
987
1006
.10.1002/nag.2470
19.
Chaussonnet
,
G.
,
Braun
,
S.
,
Dauch
,
T.
,
Keller
,
M.
,
Sänger
,
A.
,
Jakobs
,
T.
,
Koch
,
R.
,
Kolb
,
T.
, and
Bauer
,
H.-J.
,
2019
, “
Toward the Development of a Virtual Spray Test-Rig Using the Smoothed Particle Hydrodynamics Method
,”
Comput. Fluids
,
180
, pp.
68
81
.10.1016/j.compfluid.2019.01.010
20.
Brown
,
W. K.
,
1989
, “
A Theory of Sequential Fragmentation and Its Astronomical Applications
,”
J. Astrophys. Astron.
,
10
(
1
), pp.
89
112
.10.1007/BF02714980
21.
Gorokhovski
,
M.
, and
Saveliev
,
V.
,
2008
, “
Statistical Universalities in Fragmentation Under Scaling Symmetry With a Constant Frequency of Fragmentation
,”
J. Phys. D
,
41
(
8
), p.
085405
.10.1088/0022-3727/41/8/085405
22.
Gorokhovski
,
M.
,
Jouanguy
,
J.
, and
Chtab
,
A.
,
2006
, “
Simulation of Air-Blast Atomization:‘Floating Guard’statistic Particle Method for Conditioning of Les Computation; Stochastic Models of Break-Up and Coalescence
,”
Proceedings of Tenth International Conference on Liquid Atomization and Spray Systems
(ICLASS-2006), Kyoto, Japan, Aug. 27–Sept. 1, p. ICLASS06-045.
You do not currently have access to this content.