Abstract

This paper presents an experimental study of the effect of fuel nozzle geometry on swirling partially premixed methane flames, where the focus is put on the ensuing flowfield and its role on coherent structures' suppression. The burner consists of a central interchangeable fuel nozzle surrounded by a swirling co-airflow where both discharge into a short mixing tube. The nozzle geometry is classified into two groups, namely, single- and multi-orifice nozzles. The swirling motion of the co-airflow is produced using a radial-type swirl generator with a swirl number of 1.15. The flowfield characteristics and coherent structures are documented using particle image velocimetry (PIV). Flame front dynamics are captured using Mie scattering technique. Quantitative laser sheet (QLS) is used to qualitatively shed light on the mixing characteristics downstream of the mixing tube exit, and laser Doppler velocimetry (LDV) is used to extract the coherent structures' peak frequency from the power spectra. The results revealed that the fuel nozzle geometry significantly affects the mean flowfield, mean, and root-mean-square (RMS) of the flame front location, flame front asymmetry, and coherent structures' amplitude. Higher spread rate and faster decay caused by single-orifice nozzles inside the mixing tube result in divergent flames with higher degree of flame front asymmetry downstream of the mixing tube exit. On the other hand, multi-orifice nozzles mitigate coherent structures, enhance mixing, and hence, promote the most appropriate conditions for coherent structures' suppression.

References

1.
Mansour
,
M. S.
,
Elbaz
,
A. M.
, and
Samy
,
M.
,
2012
, “
The Stabilization Mechanism of Highly Stabilized Partially Premixed Flames in a Concentric Flow Conical Nozzle Burner
,”
Exp. Therm. Fluid Sci.
,
43
, pp.
55
62
.10.1016/j.expthermflusci.2012.03.017
2.
Aggarwal
,
S. K.
,
2009
, “
Extinction of Laminar Partially Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
6
), pp.
528
570
.10.1016/j.pecs.2009.04.003
3.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
4.
Lee
,
S. Y.
,
Seo
,
S.
,
Broda
,
J. C.
,
Pal
,
S.
, and
Santoro
,
R. J.
,
2000
, “
An Experimental Estimation of Mean Reaction Rate and Flame Structure During Combustion Instability in a Lean Premixed Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
775
782
.10.1016/S0082-0784(00)80280-5
5.
Al-abdeli
,
Y. M.
, and
Masri
,
A. R.
,
2015
, “
Review of Laboratory Swirl Burners and Experiments for Model Validation
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
178
196
.10.1016/j.expthermflusci.2015.07.023
6.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2011
, “
A Comparison of the Thermal, Emission and Heat Transfer Characteristics of Swirl-Stabilized Premixed and Inverse Diffusion Flames
,”
Energy Convers. Manag.
,
52
(
2
), pp.
1263
1271
.10.1016/j.enconman.2010.09.023
7.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
8.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
9.
Samarasinghe
,
J.
,
Peluso
,
S.
,
Szedlmayer
,
M.
,
De Rosa
,
A.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2013
, “
Three-Dimensional Chemiluminescence Imaging of Unforced and Forced Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101503
.10.1115/1.4024987
10.
Roux
,
S.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Meier
,
U.
, and
Bérat
,
C.
,
2005
, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis and Large Eddy Simulations
,”
Combust. Flame
,
141
(
1–2
), pp.
40
54
.10.1016/j.combustflame.2004.12.007
11.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Shildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
12.
Gupta
,
A. K.
,
Beer
,
J. M.
, and
Swithenbank
,
J.
,
1977
, “
Concentric Multi-Annular Swirl Burner: Stability Limits and Emission Characteristics
,”
Proc. Combust. Inst.
,
14
, pp.
79
91
.10.1016/S0082-0784(77)80315-9
13.
Shih
,
W.-P.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1996
, “
Stability and Emissions Characteristics of a Lean Premixed Gas Turbine Combustor
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2771
2778
.10.1016/S0082-0784(96)80115-9
14.
Joo
,
S.
,
Yoon
,
J.
,
Kim
,
J.
,
Lee
,
M.
, and
Yoon
,
Y.
,
2015
, “
NOx Emissions Characteristics of the Partially Premixed Combustion of H2/CO/CH4 Syngas Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
80
, pp.
436
444
.10.1016/j.applthermaleng.2015.01.057
15.
Kalt
,
P. A. M.
,
Al-Abdell
,
Y. M.
,
Masri
,
A. R.
, and
Barlow
,
R. S.
,
2002
, “
Swirling Turbulent Non-Premixed Flames of Methane: Flow Field and Compositional Structure
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1913
1919
.10.1016/S1540-7489(02)80232-2
16.
Ahmed
,
M. M. A.
, and
Birouk
,
M.
,
2018
, “
Effect of Fuel Nozzle Geometry and Airflow Swirl on the Coherent Structures of Partially Premixed Methane Flame Under Flashback Conditions
,”
Exp. Therm. Fluid Sci.
,
99
, pp.
304
314
.10.1016/j.expthermflusci.2018.08.003
17.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), pp.
71503
71509
.10.1115/1.4029119
18.
Iyogun
,
C. O.
, and
Birouk
,
M.
,
2009
, “
Effect of Sudden Expansion on Entrainment and Spreading Rates of a Jet Issuing From Asymmetric Nozzles
,”
Flow, Turbul. Combust.
,
82
(
3
), pp.
287
315
.10.1007/s10494-008-9176-9
19.
Iyogun
,
C. O.
,
Birouk
,
M.
, and
Kozinski
,
J. A.
,
2011
, “
Experimental Investigation of the Effect of Fuel Nozzle Geometry on the Stability of a Swirling Non-Premixed Methane Flame
,”
Fuel
,
90
(
4
), pp.
1416
1423
.10.1016/j.fuel.2010.12.033
20.
Li
,
B.
,
Baudoin
,
E.
,
Yu
,
R.
,
Sun
,
Z. W.
,
Li
,
Z. S.
,
Bai
,
X. S.
,
Alden
,
M.
, and
Mansour
,
M. S.
,
2009
, “
Experimental and Numerical Study of a Conical Turbulent Partially Premixed Flame
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1811
1818
.10.1016/j.proci.2008.06.088
21.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2011
, “
Phase-Resolved Characterization of Vortex-Flame Interaction in a Turbulent Swirl Flame
,”
Exp. Fluids
,
51
(
4
), pp.
1153
1167
.10.1007/s00348-011-1134-y
22.
Terhaar
,
S.
,
2015
, “Identification and Modeling of Coherent Structures in Swirl-Stabilized Combustors at Dry and Steam-Diluted Conditions,” Ph.D. thesis, Technische Universität Berlin, Berlin, Germany.
23.
Findeisen
,
J.
,
Gnirb
,
M.
,
Damaschke
,
N.
,
Schiffer
,
H.-P.
, and
Tropea
,
C.
,
2005
, “
Concentration Measurements Based on Mie Scattering Using a Commercial PIV System
,”
Sixth International Symposium on Particle Image Velocimetry
, Pasadena, CA, Sept.
21
23
.
24.
Freund
,
O.
,
Schaefer
,
P.
,
Rehder
,
H.-J.
, and
Roehle
,
I.
,
2011
, “
Experimental Investigations on Cooling Air Ejection at a Straight Turbine Cascade Using PIV and QLS
,”
ASME
Paper No. GT2011-45296. 10.1115/GT2011-45296
25.
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
High-Speed PIV Investigation of Coherent Structures in a Swirl-Stabilized Combustor Operating at Dry and Stream-Diluted Conditions
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July
9
12
. https://www.researchgate.net/publication/268257636_High-Speed_PIV_Investigation_of_Coherent_Structures_in_a_Swirl-Stabilized_Combustor_Operating_at_Dry_and_Steam-Diluted_Conditions
26.
Ahmed
,
M. M. A.
,
2019
, “Experimental Study of Burner Geometry Effect on the Coherent Structures, Flashback, and Flame Front Dynamics of Unconfined and Confined Partially Premixed Swirling Methane Flames,” Ph.D. thesis, University of Manitoba, Winnipeg, MB, Canada.
27.
Voigt
,
P.
,
Schodl
,
R.
, and
Griebel
,
P.
,
1997
, “
Using the Laser Light Sheet Technique in Combustion Research
,”
Proceedings of 90th AGARD-PEP Symposium on Non-Intrusive Measurement Techniques for Propulsion Engines
, Brussels, Belgium, Oct.
20
24
.https://elib.dlr.de/38460/
28.
Roehle
,
I.
,
Schodl
,
R.
,
Voigt
,
P.
, and
Willert
,
C.
,
2000
, “
Recent Developments and Applications of Quantitative Laser Light Sheet Measuring Techniques in Turbomachinery Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
1023
1035
.10.1088/0957-0233/11/7/317
29.
Chen
,
Y.
,
Kim
,
M.
,
Han
,
J.
,
Yun
,
S.
, and
Yoon
,
Y.
,
2007
, “
Analysis of Flame Surface Normal and Curvature Measured in Turbulent Premixed Stagnation-Point Flames With Crossed-Plane Tomography
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1327
1335
.10.1016/j.proci.2006.08.023
30.
Kheirkhah
,
S.
,
Gülder
,
Ö. L.
,
Maurice
,
G.
,
Halter
,
F.
, and
Gökalp
,
I.
,
2016
, “
On Periodic Behavior of Weakly Turbulent Premixed Flame Corrugations
,”
Combust. Flame
,
168
, pp.
147
165
.10.1016/j.combustflame.2016.03.013
31.
Knaus
,
D. A.
, and
Gouldin
,
F. C.
,
2000
, “
Measurements of Flamelet Orientations in Premixed Flames With Positive and Negative Markstein Numbers
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
367
373
.10.1016/S0082-0784(00)80232-5
32.
Miles
,
P. C.
, and
Gouldin
,
F. C.
,
1992
, “
Mean Reaction Rates and Flamelet Statistics for Reaction Rate Modelling in Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
477
484
.10.1016/S0082-0784(06)80061-5
33.
Tamadonfar
,
P.
, and
Gülder
,
Ö. L.
,
2015
, “
Effects of Mixture Composition and Turbulence Intensity on Flame Front Structure and Burning Velocities of Premixed Turbulent Hydrocarbon/Air Bunsen Flames
,”
Combust. Flame
,
162
(
12
), pp.
4417
4441
.10.1016/j.combustflame.2015.08.009
34.
Chen
,
Y. C.
,
Peters
,
N.
,
Schneemann
,
G. A.
,
Wruck
,
N.
,
Renz
,
U.
, and
Mansour
,
M. S.
,
1996
, “
The Detailed Flame Structure of Highly Stretched Turbulent Premixed Methane-Air Flames
,”
Combust. Flame
,
107
(
3
), pp.
223
244
.10.1016/S0010-2180(96)00070-3
35.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press,
Cambridge, UK.
36.
Ahmed
,
M. M. A.
, and
Birouk
,
M.
,
2019
, “
Burner Geometry Effect on Coherent Structures and Acoustics of a Confined Swirling Partially Premixed Methane Flame
,”
Exp. Therm. Fluid Sci.
,
105
, pp.
85
99
.10.1016/j.expthermflusci.2019.03.011
37.
Fathali
,
M.
,
Meyers
,
J.
,
Rubio
,
G.
,
Smirnov
,
S.
, and
Baelmans
,
M.
,
2008
, “
Sensitivity Analysis of Initial Condition Parameters on the Transitional Temporal Turbulent Mixing Layer
,”
J. Turbul.
,
9
, pp.
1
28
.10.1080/14685240801964912
38.
Epps
,
B. P.
, and
Techet
,
A. H.
,
2010
, “
An Error Threshold Criterion for Singular Value Decomposition Modes Extracted From PIV Data
,”
Exp. Fluids
,
48
(
2
), pp.
355
367
.10.1007/s00348-009-0740-4
39.
Raffel
,
M.
,
Willert
,
C.
,
Wereley
,
S.
, and
Kompenhans
,
J.
,
2002
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
New York
.
40.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
.10.1007/s00340-007-2928-8
41.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2009
, “
Flowfield-Flame Structure Interactions in an Oscillating Swirl Flame: An Investigation Using Phase Resolved and Simultaneous OH-PLIF and Stereoscopic PIV Measurements
,”
Combust., Explos. Shock Waves
,
45
(
5
), pp.
518
529
.10.1007/s10573-009-0063-z
42.
Kheirkhah
,
S.
, and
Gülder
,
Ö. L.
,
2013
, “
Turbulent Premixed Combustion in V-Shaped Flames: Characteristics of Flame Front
,”
Phys. Fluids
,
25
, pp.
1
23
.10.1063/1.4807073
43.
Kheirkhah
,
S.
, and
Gülder
,
Ö. L.
,
2014
, “
Topology and Brush Thickness of Turbulent Premixed V-Shaped Flames
,”
Flow, Turbul. Combust.
,
93
(
3
), pp.
439
459
.10.1007/s10494-014-9563-3
44.
Vena
,
P. C.
,
Deschamps
,
B.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Johnson
,
M. R.
,
2015
, “
Heat Release Rate Variations in a Globally Stoichiometric, Stratified Iso-Octane/Air Turbulent V-Flame
,”
Combust. Flame
,
162
(
4
), pp.
944
959
.10.1016/j.combustflame.2014.09.019
45.
Namazian
,
M.
,
Shepherd
,
I. G.
, and
Talbot
,
L.
,
1986
, “
Characterization of the Density Fluctuations in Turbulent V-Shaped Premixed Flames
,”
Combust. Flame
,
64
(
3
), pp.
299
308
.10.1016/0010-2180(86)90147-1
46.
Chowdhury
,
B. R.
,
Wagner
,
J. A.
, and
Cetegen
,
B. M.
,
2017
, “
Experimental Study of the Effect of Turbulence on the Structure and Dynamics of a Bluff-Body Stabilized Lean Premixed Flame
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1853
1859
.10.1016/j.proci.2016.07.125
47.
Mayer
,
C.
,
Sangl
,
J.
,
Sattelmayer
,
T.
,
Lachaux
,
T.
, and
Bernero
,
S.
,
2012
, “
Study on the Operational Window of a Swirl Stabilized Syngas Burner Under Atmospheric and High Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031506
.10.1115/1.4004255
You do not currently have access to this content.