Large eddy simulation of n-heptane spray flames is conducted to investigate the multiple-stage ignition process under extreme (low-temperature, low oxygen, and high-temperature, high-density) conditions. At low oxygen concentrations, the first-stage ignition initiates in the fuel-rich region and then moves to stoichiometric equivalence ratio regions by decreasing the initial temperature. It is also clear that at high temperatures, high oxygen concentrations, or high densities, the reactivity of the mixture is enhanced, where high values of progress variable are observed. Analysis of key intermediate species, including acetylene (C2H2), formaldehyde (CH2O), and hydroxyl (OH) in the mixture fraction and temperature space provides valuable insights into the complex combustion process of the n-heptane spray flames under different initial conditions. The results also suggest that C2H2 appears over a wider range in the mixture fraction space at higher temperature or oxygen concentration condition, implying that it mainly forms at the fuel-rich regions. The initial oxygen concentration of the ambient gas has great influence on the formation and oxidization of C2H2, and the maximum temperature depends on the initial oxygen concentration. OH is mainly formed at the stoichiometric equivalence ratio region, which moves to high-temperature regions very quickly especially at higher oxygen concentrations. Finally, analysis of the premixed and nonpremixed combustion regimes in n-heptane spray flames is also conducted, and both premixed and nonpremixed combustion coexist in spray flames.

References

1.
Agarwal
,
A. K.
,
Singh
,
A. P.
, and
Maurya
,
R. K.
,
2017
, “
Evolution, Challenges and Path Forward for Low Temperature Combustion Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
1
56
.
2.
Pei
,
Y.
,
Hawkes
,
E. R.
,
Bolla
,
M.
,
Kook
,
S.
,
Goldin
,
G. M.
,
Yang
,
Y.
,
Pope
,
S. B.
, and
Som
,
S.
,
2016
, “
An Analysis of the Structure of an n-Dodecane Spray Flame Using TPDF Modelling
,”
Combust. Flame
,
168
, pp.
420
435
.
3.
Wang
,
H.
,
Ra
,
Y.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2014
, “
Development of a Reduced n-Dodecane-PAH Mechanism and Its Application for n-Dodecane Soot Predictions
,”
Fuel
,
136
, pp.
25
36
.
4.
Pickett
,
L. M.
, and
Siebers
,
D. L.
,
2004
, “
Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure
,”
Combust. Flame
,
138
(
1–2
), pp.
114
135
.
5.
Jangi
,
M.
,
Lucchini
,
T.
,
D'Errico
,
G.
, and
Bai
,
X.-S.
,
2013
, “
Effects of EGR on the Structure and Emissions of Diesel Combustion
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3091
3098
.
6.
Gong
,
C.
,
Jangi
,
M.
, and
Bai
,
X.-S.
,
2015
, “
Diesel Flame Lift-Off Stabilization in the Presence of Laser-Ignition: A Numerical Study
,”
Combust. Theory Modell.
,
19
(
6
), pp.
696
713
.
7.
Jangi
,
M.
,
Lucchini
,
T.
,
Gong
,
C.
, and
Bai
,
X.-S.
,
2015
, “
Effects of Fuel Cetane Number on the Structure of Diesel Spray Combustion: An Accelerated Eulerian Stochastic Fields Method
,”
Combust. Theory Modell.
,
19
(
5
), pp.
549
567
.
8.
Bhattacharjee
,
S.
, and
Haworth
,
D. C.
,
2013
, “
Simulations of Transient n-Heptane and n-Dodecane Spray Flames Under Engine-Relevant Conditions Using a Transported PDF Method
,”
Combust. Flame
,
160
(
10
), pp.
2083
2102
.
9.
Bolla
,
M.
,
Farrace
,
D.
,
Wright
,
Y. M.
,
Boulouchos
,
K.
, and
Mastorakos
,
E.
,
2014
, “
Influence of Turbulence-Chemistry Interaction for n-Heptane Spray Combustion Under Diesel Engine Conditions With Emphasis on Soot Formation and Oxidation
,”
Combust. Theory Modell.
,
18
(
2
), pp.
330
360
.
10.
Dhuchakallaya
,
I.
,
Rattanadecho
,
P.
, and
Watkins
,
P.
,
2013
, “
Auto-Ignition and Combustion of Diesel Spray Using Unsteady Laminar Flamelet Model
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
420
427
.
11.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3039
3047
.
12.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-Heptane Jet Ignitions With the PDF Method
,”
Flow Turbul. Combust.
,
91
(
2
), pp.
249
280
.
13.
Eguz
,
U.
,
Ayyapureddi
,
S.
,
Bekdemir
,
C.
,
Somers
,
B.
, and
de Goey
,
P.
,
2013
, “
Manifold Resolution Study of the FGM Method for an Igniting Diesel Spray
,”
Fuel
,
113
, pp.
228
238
.
14.
Bajaj
,
C.
,
Ameen
,
M.
, and
Abraham
,
J.
,
2013
, “
Evaluation of an Unsteady Flamelet Progress Variable Model for Autoignition and Flame Lift-Off in Diesel Jets
,”
Combust. Sci. Technol.
,
185
(
3
), pp.
454
472
.
15.
Novella
,
R.
,
Garcia
,
A.
,
Pastor
,
J. M.
, and
Domenech
,
V.
,
2011
, “
The Role of Detailed Chemical Kinetics on CFD Diesel Spray Ignition and Combustion Modelling
,”
Math. Comput. Modell.
,
54
(
7–8
), pp.
1706
1719
.
16.
Xiao
,
G.
,
Jia
,
M.
, and
Wang
,
T.
,
2016
, “
Large Eddy Simulation of n-Heptane Spray Combustion in Partially Premixed Combustion Regime With Linear Eddy Model
,”
Energy
,
97
, pp.
20
35
.
17.
Lu
,
Z.
,
Zhou
,
L.
,
Ren
,
Z.
,
Lu
,
T.
, and
Law
,
C. K.
,
2016
, “
Effects of Spray and Turbulence Modelling on the Mixing and Combustion Characteristics of an n-Heptane Spray Flame Simulated With Dynamic Adaptive Chemistry
,”
Flow, Turbul. Combust.
,
97
(
2
), pp.
609
629
.
18.
Zhou
,
L.
,
Lu
,
Z.
,
Ren
,
Z.
,
Lu
,
T.
, and
H. Luo
,
K.
,
2015
, “
Numerical Analysis of Ignition and Flame Stabilization in an n-Heptane Spray Flame
,”
Int. J. Heat Mass Transfer
,
88
, pp.
565
571
.
19.
Solsjö
,
R.
,
Jangi
,
M.
,
Chartier
,
C.
,
Andersson
,
Ö.
, and
Bai
,
X. S.
,
2013
, “
Lift-Off and Stabilization of n-Heptane Combustion in a Diesel Engine With a Multiple-Nozzle Injection
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3031
3038
.
20.
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2009
, “
Numerical Study of n-Heptane Auto-Ignition Using LES-PDF Methods
,”
Flow Turbul. Combust.
,
83
(
3
), pp.
407
423
.
21.
Gallot-Lavallée
,
S.
, and
Jones
,
W. P.
,
2016
, “
Large Eddy Simulation of Spray Auto-Ignition Under EGR Conditions
,”
Flow, Turbul. Combust.
,
96
(
2
), pp.
513
534
.
22.
Irannejad
,
A.
,
Banaeizadeh
,
A.
, and
Jaberi
,
F.
,
2015
, “
Large Eddy Simulation of Turbulent Spray Combustion
,”
Combust. Flame
,
162
(
2
), pp.
431
450
.
23.
Bekdemir
,
C.
,
Somers
,
L. M. T.
,
de Goey
,
L. P. H.
,
Tillou
,
J.
, and
Angelberger
,
C.
,
2013
, “
Predicting Diesel Combustion Characteristics With Large-Eddy Simulations Including Tabulated Chemical Kinetics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3067
3074
.
24.
Kundu
,
P.
,
Ameen
,
M. M.
, and
Som
,
S.
,
2017
, “
Importance of Turbulence-Chemistry Interactions at Low Temperature Engine Conditions
,”
Combust. Flame
,
183
, pp.
283
298
.
25.
Mohan
,
V. R.
, and
Haworth
,
D. C.
,
2015
, “
Turbulence-Chemistry Interactions in a Heavy-Duty Compression-Ignition Engine
,”
Proc. Combust. Inst.
,
35
, pp.
3053
3060
.
26.
Musculus
,
M. P. B.
,
Miles
,
P. C.
, and
Pickett
,
L. M.
,
2013
, “
Conceptual Models for Partially Premixed Low-Temperature Diesel Combustion
,”
Prog. Energy Combust. Sci.
,
39
(
2–3
), pp.
246
283
.
27.
Krisman
,
A.
,
Hawkes
,
E. R.
,
Talei
,
M.
,
Bhagatwala
,
A.
, and
Chen
,
J. H.
,
2016
, “
Characterisation of Two-Stage Ignition in Diesel Engine-Relevant Thermochemical Conditions Using Direct Numerical Simulation
,”
Combust. Flame
,
172
, pp.
326
341
.
28.
Wei
,
H.
,
Zhao
,
W.
,
Zhou
,
L.
,
Chen
,
C.
, and
Shu
,
G.
,
2018
, “
Large Eddy Simulation of the Low Temperature Ignition and Combustion Processes on Spray Flame With the Linear Eddy Model
,”
Combust. Theory Modell.
,
22
(
2
), pp.
237
263
.
29.
Amsden
,
A. A.
,
1997
, “
KIVA3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Lab, Los Alamos, NM.
30.
van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
(
4
), pp.
361
370
.
31.
Zhou
,
L.
,
Luo
,
K. H.
,
Qin
,
W.
,
Jia
,
M.
, and
Shuai
,
S. J.
,
2015
, “
Large Eddy Simulation of Spray and Combustion Characteristics With Realistic Chemistry and High-Order Numerical Scheme Under Diesel Engine-Like Conditions
,”
Energy Convers. Manage.
,
93
, pp.
377
387
.
32.
Sone
,
K.
, and
Menon
,
S.
,
2003
, “
Effect of Subgrid Modeling on the In-Cylinder Unsteady Mixing Process in a Direct Injection Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
435
443
.
33.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE
Paper No. 980131.
34.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Los Alamos National Laboratary, Los Alamos, NM.
35.
Zhou
,
L.
,
Xie
,
M. Z.
, and
Jia
,
M.
, “
Influences of Subgrid Turbulent Kinetic Energy and Turbulent Dispersion on the Characteristics of Fuel Spray
,”
SAE
Paper No. 2011-01-1839.
36.
Bharadwaj
,
N.
,
Rutland
,
C.
, and
Chang
,
S.
,
2009
, “
Large Eddy Simulation Modelling of Spray-Induced Turbulence Effects
,”
Int. J. Engine Res.
,
10
(
2
), pp.
97
119
.
37.
Wei
,
H.
,
Zhao
,
W.
,
Zhou
,
L.
, and
Shu
,
G.
,
2018
, “
Numerical Investigation of Diesel Spray Flame Structures Under Diesel Engine-Relevant Conditions Using Large Eddy Simulation
,”
Combust. Sci. Technol.
,
190
(
5
), pp.
909
932
.
38.
Stephen
,
B. P.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.
39.
Liu
,
S. L.
,
Hewson
,
J. C.
,
Chen
,
J. H.
, and
Pitsch
,
H.
,
2004
, “
Effects of Strain Rate on High-Pressure Nonpremixed n-Heptane Autoignition in Counterflow
,”
Combust. Flame
,
137
(
3
), pp.
320
339
.
40.
Borghesi
,
G.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
,
2013
, “
Complex Chemistry DNS of n-Heptane Spray Autoignition at High Pressure and Intermediate Temperature Conditions
,”
Combust. Flame
,
160
(
7
), pp.
1254
1275
.
41.
Pickett
,
L. M.
,
2012
, “
Engine Combustion Network
,” Sandia National Laboratories, Livermore, CA, accessed June 11, 2018, http://www. sandia.gov/ecn/
42.
Wehrfritz
,
A.
,
Kaario
,
O.
,
Vuorinen
,
V.
, and
Somers
,
B.
,
2016
, “
Large Eddy Simulation of n-Dodecane Spray Flames Using Flamelet Generated Manifolds
,”
Combust. Flame
,
167
, pp.
113
131
.
43.
Salehi
,
F.
,
Cleary
,
M. J.
,
Masri
,
A. R.
,
Ge
,
Y.
, and
Klimenko
,
A. Y.
,
2017
, “
Sparse-Lagrangian MMC Simulations of an n-Dodecane Jet at Engine-Relevant Conditions
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3577
3585
.
44.
Gong
,
C.
,
Jangi
,
M.
, and
Bai
,
X.-S.
,
2014
, “
Large Eddy Simulation of n-Dodecane Spray Combustion in a High Pressure Combustion Vessel
,”
Appl. Energy
,
136
, pp.
373
381
.
45.
Payri
,
R.
,
Viera
,
J. P.
,
Gopalakrishnan
,
V.
, and
Szymkowicz
,
P. G.
,
2017
, “
The Effect of Nozzle Geometry Over Ignition Delay and Flame Lift-Off of Reacting Direct-Injection Sprays for Three Different Fuels
,”
Fuel
,
199
, pp.
76
90
.
46.
Chung
,
S. H.
,
2007
, “
Stabilization, Propagation and Instability of Tribrachial Triple Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
877
892
.
47.
Saghafian
,
A.
,
Shunn
,
L.
,
Philips
,
D. A.
, and
Ham
,
F.
,
2015
, “
Large Eddy Simulations of the HIFiRE Scramjet Using a Compressible Flamelet/Progress Variable Approach
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2163
2172
.
48.
Desantes
,
J. M.
,
García-Oliver
,
J. M.
,
Novella
,
R.
, and
Pérez-Sánchez
,
E. J.
,
2017
, “
Application of an Unsteady Flamelet Model in a RANS Framework for Spray a Simulation
,”
Appl. Therm. Eng.
,
117
, pp.
50
64
.
49.
Tree
,
D. R.
, and
Svensson
,
K. I.
,
2007
, “
Soot Processes in Compression Ignition Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
272
309
.
50.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
,
2005
, “
Soot Formation in Diesel Combustion Under High-EGR Conditions
,”
SAE
Paper No. 2005-01-3834.
51.
Kelman
,
J.
, and
Masri
,
A.
,
1998
, “
Reaction Zone Structure and Scalar Dissipation Rates in Turbulent Diffusion Flames
,”
Combust. Sci. Technol.
,
133
(
4–6
), pp.
17
55
.
52.
Zhang
,
P.
,
Ji
,
W.
,
He
,
T.
,
He
,
X.
,
Wang
,
Z.
,
Yang
,
B.
, and
Law
,
C. K.
,
2016
, “
First-Stage Ignition Delay in the Negative Temperature Coefficient Behavior: Experiment and Simulation
,”
Combust. Flame
,
167
, pp.
14
23
.
You do not currently have access to this content.