An efficient surrogate fuel formulation methodology, which directly uses the chemical structure information from nuclear magnetic resonance (NMR) spectroscopy analysis, has been proposed. Five functional groups, paraffinic CH2, paraffinic CH3, aromatic C-CH, olefinic CH-CH2, and cycloparaffin CH2, have been selected to show the basic molecular structure of the fuels for the advanced combustion engines (FACE) fuels. A palette that contains six candidate components, n-heptane, iso-octane, toluene, 2,5-dimethylhexane, methylcyclohexane, and 1-hexene, is chosen for different FACE fuels, based on the consideration that surrogate mixtures should provide the representative functional groups and comparable molecular sizes. The kinetic mechanisms of these six candidate components are chosen to assemble a detailed mechanism of each surrogate fuel for FACE gasoline. Whereafter, the accuracy of FACE A and F surrogate models was demonstrated by comparing the model predictions against experimental data in homogeneous ignition, jet stirred reactor oxidation, and premixed flame.

References

1.
Edwards
,
T.
, and
Maurice
,
L. Q.
,
2001
, “
Surrogate Mixtures to Represent Complex Aviation and Rocket Fuels
,”
J. Propul. Power
,
17
(
2
), pp.
461
466
.
2.
Narayanaswamy
,
K.
,
Pepiot
,
P.
, and
Pitsch
,
H.
, “
Jet Fuels and Fischer-Tropsch Fuels: Surrogate Definition and Chemical Kinetic Modeling
,”
U.S. National Combustion Meeting
, Salt Lake City, UT, May 19–22, Paper No.
070RK-0273
.https://sutherland.che.utah.edu/USCI2013/PAPERS/3B01-070RK-0273.pdf
3.
Widegren
,
J. A.
, and
Bruno
,
T. J.
,
2008
, “
Thermal Decomposition Kinetics of the Aviation Turbine Fuel Jet A
,”
Ind. Eng. Chem. Res.
,
47
(
13
), pp.
4342
4348
.
4.
Lovestead
,
T. M.
,
Burger
,
J. L.
,
Schneider
,
N.
, and
Bruno
,
T. J.
,
2016
, “
Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development
,”
Energy Fuels
,
30
(
12
), pp.
10029
10044
.
5.
Bruno
,
T. J.
,
Abel
,
K. R.
, and
Riggs
,
J. R.
,
2012
, “
Comparison of JP-8 and JP-8+ 100 With the Advanced Distillation Curve Approach
,”
Energy Fuels
,
26
(
9
), pp.
5843
5850
.
6.
Bruno
,
T. J.
, and
Smith
,
B. L.
,
2006
, “
Improvements in the Measurement of Distillation Curves. 2. Application to Aerospace/Aviation Fuels RP-1 and S-8
,”
Ind. Eng. Chem. Res.
,
45
(
12
), pp.
4381
4388
.
7.
Anitescu
,
G.
, and
Bruno
,
T. J.
,
2012
, “
Biodiesel Fuels From Supercritical Fluid Processing: Quality Evaluation With the Advanced Distillation Curve Method and Cetane Numbers
,”
Energy Fuels
,
26
(
8
), pp.
5256
5264
.
8.
Doble
,
P.
,
Sandercock
,
M.
,
Du Pasquier
,
E.
,
Petocz
,
P.
,
Roux
,
C.
, and
Dawson
,
M.
,
2003
, “
Classification of Premium and Regular Gasoline by Gas Chromatography/Mass Spectrometry, Principal Component Analysis and Artificial Neural Networks
,”
Forensic Sci. Int.
,
132
(
1
), pp.
26
39
.
9.
Sandercock
,
P.
, and
Du Pasquier
,
E.
,
2003
, “
Chemical Fingerprinting of Unevaporated Automotive Gasoline Samples
,”
Forensic Sci. Int.
,
134
(
1
), pp.
1
10
.
10.
Wang
,
F. C.-Y.
,
Qian
,
K.
, and
Green
,
L. A.
,
2005
, “
GC× MS of Diesel: A Two-Dimensional Separation Approach
,”
Anal. Chem.
,
77
(
9
), pp.
2777
2785
.
11.
Mei
,
H.
,
Mei
,
B.
, and
Yen
,
T. F.
,
2003
, “
A New Method for Obtaining Ultra-Low Sulfur Diesel Fuel Via Ultrasound Assisted Oxidative Desulfurization
,”
Fuel
,
82
(
4
), pp.
405
414
.
12.
Dagaut
,
P.
,
El Bakali
,
A.
, and
Ristori
,
A.
,
2006
, “
The Combustion of Kerosene: Experimental Results and Kinetic Modelling Using 1- to 3-Component Surrogate Model Fuels
,”
Fuel
,
85
(
7–8
), pp.
944
956
.
13.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.
14.
Sarathy
,
S. M.
,
Kukkadapu
,
G.
,
Mehl
,
M.
,
Wang
,
W.
,
Javed
,
T.
,
Park
,
S.
,
Oehlschlaeger
,
M. A.
,
Farooq
,
A.
,
Pitz
,
W. J.
, and
Sung
,
C.-J.
,
2015
, “
Ignition of Alkane-Rich FACE Gasoline Fuels and Their Surrogate Mixtures
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
249
257
.
15.
Sarathy
,
S. M.
,
Kukkadapu
,
G.
,
Mehl
,
M.
,
Javed
,
T.
,
Ahmed
,
A.
,
Naser
,
N.
,
Tekawade
,
A.
,
Kosiba
,
G.
,
AlAbbad
,
M.
, and
Singh
,
E.
,
2016
, “
Compositional Effects on the Ignition of FACE Gasolines
,”
Combust. Flame
,
169
, pp.
171
193
.
16.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.
17.
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Farouk
,
T. I.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Hui
,
X.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Iyer
,
V.
,
Iyer
,
S.
,
Litzinger
,
T. A.
,
Santoro
,
R. J.
,
Malewicki
,
T.
, and
Brezinsky
,
K.
,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.
18.
Allard
,
L. N.
,
Hole
,
N. J.
,
Webster
,
G. D.
,
Ryan
,
T. W.
,
Ott
,
D.
,
Beregszazy
,
A.
,
Fairbridge
,
C. W.
,
Cooley
,
J.
,
Mitchell
,
K.
, and
Richardson
,
E. K.
,
1997
, “
Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)-Part II
,”
SAE Paper No. 0148-7191
.
19.
Allard
,
L. N.
,
Webster
,
G. D.
,
Ryan
,
T. W.
,
Matheaus
,
A. C.
,
Baker
,
G.
,
Beregszazy
,
A.
,
Read
,
H.
,
Mortimer
,
K.
, and
Jones
,
G. J.
,
2001
, “
Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™)—Part IV
,”
SAE
Paper No. 2001-01-3527
.
20.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
,
Schihl
,
P.
, and
Sattler
,
E.
,
2017
, “
Formulation of Sasol Isomerized Paraffinic Kerosene Surrogate Fuel for Diesel Engine Application Using an Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
092801
.
21.
Yang
,
Y.
,
Boehman
,
A. L.
, and
Santoro
,
R. J.
,
2007
, “
A Study of Jet Fuel Sooting Tendency Using the Threshold Sooting Index (TSI) Model
,”
Combust. Flame
,
149
(
1–2
), pp.
191
205
.
22.
Liang
,
L.
,
Naik
,
C. V.
,
Puduppakkam
,
K.
,
Wang
,
C.
,
Modak
,
A.
,
Meeks
,
E.
,
Ge
,
H.-W.
,
Reitz
,
R. D.
, and
Rutland
,
C.
,
2010
, “
Efficient Simulation of Diesel Engine Combustion Using Realistic Chemical Kinetics in CFD
,”
SAE
Paper No. 2010-01-0178
.
23.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2014
, “
A Surrogate for Emulating the Physical and Chemical Properties of Conventional Jet Fuel
,”
Combust. Flame
,
161
(
6
), pp.
1489
1498
.
24.
Abianeh
,
O. S.
,
Oehlschlaeger
,
M. A.
, and
Sung
,
C.-J.
,
2015
, “
A Surrogate Mixture and Kinetic Mechanism for Emulating the Evaporation and Autoignition Characteristics of Gasoline Fuel
,”
Combust. Flame
,
162
(
10
), pp.
3773
3784
.
25.
Puduppakkam
,
K. V.
,
Liang
,
L.
,
Naik
,
C. V.
,
Meeks
,
E.
, and
Bunting
,
B. G.
,
2009
, “
Combustion and Emissions Modeling of a Gasoline HCCI Engine Using Model Fuels
,”
SAE
Paper No. 2009-01-0669
.
26.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E.
,
Sarofim
,
A.
,
Granata
,
S.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
417
.
27.
Slavinskaya
,
N. A.
,
Zizin
,
A.
, and
Aigner
,
M.
,
2010
, “
On Model Design of a Surrogate Fuel Formulation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), pp.
2201
2210
.
28.
Carr
,
M. A.
,
Caton
,
P. A.
,
Hamilton
,
L. J.
,
Cowart
,
J. S.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2012
, “
An Experimental and Modeling-Based Study Into the Ignition Delay Characteristics of Diesel Surrogate Binary Blend Fuels
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072803
.
29.
ASTM International,
2004
, “
ASTM Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure
,” ASTM International, West Conshohocken, PA, Standard No. ASTM D 86-04b.
30.
Yu
,
J.
,
Ju
,
Y.
, and
Gou
,
X.
,
2016
, “
Surrogate Fuel Formulation for Oxygenated and Hydrocarbon Fuels by Using the Molecular Structures and Functional Groups
,”
Fuel
,
166
, pp.
211
218
.
31.
Yu
,
J.
,
Wang
,
Z.
,
Zhuo
,
X.
,
Wang
,
W.
, and
Gou
,
X.
,
2016
, “
Surrogate Definition and Chemical Kinetic Modeling for Two Different Jet Aviation Fuels
,”
Energy Fuels
,
30
(
2
), pp.
1375
1382
.
32.
Allen
,
D. T.
,
1986
, “
Structural Characterization and Property Estimation for Complex Mixtures
,”
Fluid Phase Equilib.
,
30
, pp.
353
366
.
33.
Elbaz
,
A. M.
,
Gani
,
A.
,
Hourani
,
N.
,
Emwas
,
A. H.
,
Sarathy
,
S. M.
, and
Roberts
,
W. L.
,
2015
, “
TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil
,”
Energy Fuels
,
29
(
12
), pp.
7825
7835
.
34.
Nielsen
,
K. E.
,
Dittmer
,
J.
,
Malmendal
,
A.
, and
Nielsen
,
N. C.
,
2008
, “
Quantitative Analysis of Constituents in Heavy Fuel Oil by 1H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis
,”
Energy Fuels
,
22
(
6
), pp.
4070
4076
.
35.
Edwards
,
J. C.
,
2011
, “
A Review of Applications of NMR Spectroscopy in the Petroleum Industry
,”
Spectroscopic Analysis Petroleum Products Lubricants
,
ASTM International
,
West Conshohocken, PA
, pp.
423
472
.
36.
Burger
,
J. L.
,
Widegren
,
J. A.
,
Lovestead
,
T. M.
, and
Bruno
,
T. J.
,
2015
, “
1H and 13C NMR Analysis of Gas Turbine Fuels as Applied to the Advanced Distillation Curve Method
,”
Energy Fuels
,
29
(
8
), pp.
4874
4885
.
37.
Abdul Jameel
,
A. G.
,
Elbaz
,
A. M.
,
Emwas
,
A.-H.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2016
, “
Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1H and 13C Nuclear Magnetic Resonance Spectroscopy
,”
Energy Fuels
,
30
(
5
), pp.
3894
3905
.
38.
Burri
,
J.
,
Crockett
,
R.
,
Hany
,
R.
, and
Rentsch
,
D.
,
2004
, “
Gasoline Composition Determined by H NMR Spectroscopy
,”
Fuel
,
83
(
2
), pp.
187
193
.
39.
Hsieh
,
P. Y.
,
Widegren
,
J. A.
,
Fortin
,
T. J.
, and
Bruno
,
T. J.
,
2014
, “
Chemical and Thermophysical Characterization of an Algae-Based Hydrotreated Renewable Diesel Fuel
,”
Energy Fuels
,
28
(
5
), pp.
3192
3205
.
40.
Abdul Jameel
,
A. G.
,
Naser
,
N.
,
Emwas
,
A.-H.
,
Dooley
,
S.
, and
Sarathy
,
S. M.
,
2016
, “
Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression
,”
Energy Fuels
,
30
(
11
), pp.
9819
9835
.
41.
Kapur
,
G.
,
Ecker
,
A.
, and
Meusinger
,
R.
,
2001
, “
Establishing Quantitative Structure—Property Relationships (QSPR) of Diesel Samples by Proton-NMR & Multiple Linear Regression (MLR) Analysis
,”
Energy Fuels
,
15
(
4
), pp.
943
948
.
42.
Cannella
,
W.
,
Foster
,
M.
,
Gunter
,
G.
, and
Leppard
,
W.
,
2014
, “
FACE Gasolines and Blends With Ethanol: Detailed Characterization of Physical and Chemical Properties
,”
Coordinating Research Council, Inc.
,
Alpharetta, GA
, CRC Report No.
AVFL-24
.https://crcao.org/reports/recentstudies2014/AVFL-24/AVFL-24%20FACE%20Gasolines%20Report%20-%20071414.pdf
43.
Javed
,
T.
,
2016
, “
Combustion Kinetic Studies of Gasolines and Surrogates
,”
Ph.D. dissertation
, King Abdullah University Science and Technology, Thuwal, Saudi Arabia.https://repository.kaust.edu.sa/bitstream/handle/10754/621837/Tamour_Javed_PhD_Dissertationv9.pdf?sequence=1&isAllowed=y
44.
Burger
,
J. L.
,
Schneider
,
N.
, and
Bruno
,
T. J.
,
2015
, “
Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines
,”
Energy Fuels
,
29
(
7
), pp.
4227
4235
.
45.
Benson
,
S. W.
,
Cruickshank
,
F.
,
Golden
,
D.
,
Haugen
,
G. R.
,
O'neal
,
H.
,
Rodgers
,
A.
,
Shaw
,
R.
, and
Walsh
,
R.
,
1969
, “
Additivity Rules for the Estimation of Thermochemical Properties
,”
Chem. Rev.
,
69
(
3
), pp.
279
324
.
46.
Benson
,
S. W.
, and
Buss
,
J. H.
,
1958
, “
Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties
,”
J. Chem. Phys.
,
29
(
3
), pp.
546
572
.
47.
Bruno
,
T. J.
, and
Svoronos
,
P. D.
,
2003
,
CRC Handbook of Basic Tables for Chemical Analysis
,
CRC Press
,
Boca Raton, FL
.
48.
Zhou
,
C.-W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
, and
Oehlschlaeger
,
M. A.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.
49.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
50.
Sarathy
,
S. M.
,
Javed
,
T.
,
Karsenty
,
F.
,
Heufer
,
A.
,
Wang
,
W.
,
Park
,
S.
,
Elwardany
,
A.
,
Farooq
,
A.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
2014
, “
A Comprehensive Combustion Chemistry Study of 2, 5-Dimethylhexane
,”
Combust. Flame
,
161
(
6
), pp.
1444
1459
.
51.
Narayanaswamy
,
K.
,
Pitsch
,
H.
, and
Pepiot
,
P.
,
2015
, “
A Chemical Mechanism for Low to High Temperature Oxidation of Methylcyclohexane as a Component of Transportation Fuel Surrogates
,”
Combust. Flame
,
162
(
4
), pp.
1193
1213
.
52.
Design
,
R.
,
2010
,
Inc. CHEMKIN-PRO, Release 15101
,
Reaction Design
,
San Diego, CA
.
53.
Chen
,
B.
,
Togbé
,
C.
,
Wang
,
Z.
,
Dagaut
,
P.
, and
Sarathy
,
S. M.
,
2017
, “
Jet-Stirred Reactor Oxidation of Alkane-Rich FACE Gasoline Fuels
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
517
524
.
54.
Selim
,
H.
,
Mohamed
,
S. Y.
,
Dawood
,
A. E.
, and
Sarathy
,
S. M.
,
2017
, “
Understanding Premixed Flame Chemistry of Gasoline Fuels by Comparing Quantities of Interest
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1203
1211
.
55.
Chen
,
B.
,
Togbé
,
C.
,
Selim
,
H.
,
Dagaut
,
P.
, and
Sarathy
,
S. M.
,
2017
, “
Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline
,”
Energy Fuels
,
31
(
5
), pp.
5543
5553
.
You do not currently have access to this content.