Sequential combustion constitutes a major technological step-change for gas turbines applications. This design provides higher operational flexibility, lower emissions, and higher efficiency compared to today's conventional architectures. Like any constant pressure combustion system, sequential combustors can undergo thermoacoustic instabilities. These instabilities potentially lead to high-amplitude acoustic limit cycles, which shorten the engine components' lifetime, and therefore, reduce their reliability and availability. In the case of a sequential system, the two flames are mutually coupled via acoustic and entropy waves. This additional interstages interaction markedly complicates the already challenging problem of thermoacoustic instabilities. As a result, new and unexplored system dynamics are possible. In this work, experimental data from our generic sequential combustor are presented. The system exhibits many different distinctive dynamics, as a function of the operation parameters and of the combustor arrangement. This paper investigates a particular bifurcation, where two thermoacoustic modes synchronize their self-sustained oscillations over a range of operating conditions. A low-order model of this thermoacoustic bifurcation is proposed. This consists of two coupled stochastically driven nonlinear oscillators and is able to reproduce the peculiar dynamics associated with this synchronization phenomenon. The model aids in understanding what the physical mechanisms that play a key role in the unsteady combustor physics are. In particular, it highlights the role of entropy waves, which are a significant driver of thermoacoustic instabilities in this sequential setup. This research helps to lay the foundations for understanding the thermoacoustic instabilities in sequential combustion systems.

References

1.
Pasta
,
M.
,
Wessells
,
C. D.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2012
, “
A High-Rate and Long Cycle Life Aqueous Electrolyte Battery for Grid-Scale Energy Storage
,”
Nat. Commun.
,
3
(
1
), p.
1149
.
2.
Budischak
,
C.
,
Sewell
,
D.
,
Thomson
,
H.
,
Mach
,
L.
,
Veron
,
D. E.
, and
Kempton
,
W.
,
2013
, “
Cost-Minimized Combinations of Wind Power, Solar Power and Electrochemical Storage, Powering the Grid Up to 99.9% of the Time
,”
J. Power Sources
,
225
, pp.
60
74
.
3.
Zhang
,
Y.
,
Gatsis
,
N.
, and
Giannakis
,
G. B.
,
2013
, “
Robust Energy Management for Microgrids With High-Penetration Renewables
,”
IEEE Trans. Sustainable Energy
,
4
(
4
), pp.
944
953
.
4.
IEA
,
2015
, “
The World Energy Outlook 2016
,” International Energy Agency, Paris, France,
Technical Report
.https://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html
5.
Sawyer
,
R. F.
,
2009
, “
Science Based Policy for Addressing Energy and Environmental Problems
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
45
56
.
6.
GMI,
2017
, “
Industrial Gas Turbine Market
,” Global Market Insights, Selbyville, DE, Technical Report No. GMI272.
7.
Marmilic
,
R.
,
Hellat
,
J.
,
Freitag
,
E.
, and
Eroglu
,
A.
,
2014
, “
Gas Turbine Assembly and Corresponding Operating Method
,” U.S. Patent No. 2014/0033728A1.
8.
Eroglu
,
A.
, and
Freitag
,
E.
,
2014
, “
Method for Mixing a Dilution Air in a Sequential Combustion System of a Gas Turbine
,” U.S. Patent No. 2014/0053566A1.
9.
DiCintio
,
R. M.
,
Melton
,
P. B.
,
Lebegue
,
J. S.
, and
Stoia
,
L. J.
,
2013
, “
Methods Relating to Integrating Late Lean Injection Into Combustion Turbine Engines
,” U.S. Patent No. 2013/0031783A1.
10.
Beck
,
C.
,
Deiss
,
O.
,
Krebs
,
W.
, and
Wegner
,
B.
,
2014
, “
Combustion Chamber for a Gas Turbine and Burner Arrangement
,” U.S. Patent No. 2014/0260265A1.
11.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo gt36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.
12.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
13.
Berger
,
F. M.
,
Hummel
,
T.
,
Romero Vega
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
A Novel Reheat Combustor Experiment for the Analysis of High-Frequency Flame Dynamics—Concept and Experimental Validation
,” American Society of Mechanical Engineers, New York.
14.
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2012
, “
Nonlinear Interactions of Multiple Linearly Unstable Thermoacoustic Modes
,”
Int. J. Spray Combust. Dyn.
,
4
(
1
), pp.
1
27
.
15.
Balusamy
,
S.
,
Li
,
L. K.
,
Han
,
Z.
, and
Hochgreb
,
S.
,
2017
, “
Extracting Flame Describing Functions in the Presence of Self-Excited Thermoacoustic Oscillations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3851
3861
.
16.
Acharya
,
V. S.
,
Bothien
,
M. R.
, and
Lieuwen
,
T. C.
,
2018
, “
Non-Linear Dynamics of Thermoacoustic Eigen-Mode Interactions
,”
Combust. Flame
,
194
, pp.
309
321
.
17.
Ghirardo
,
G.
,
Juniper
,
M. P.
, and
Bothien
,
M. R.
,
2018
, “
The Effect of the Flame Phase on Thermoacoustic Instabilities
,”
Combust. Flame
,
187
, pp.
165
184
.
18.
Mondal
,
S.
,
Pawar
,
S.
, and
Sujith
,
R.
,
2017
, “
Synchronous Behaviour of Two Interacting Oscillatory Systems Undergoing Quasiperiodic Route to Chaos
,”
Chaos
,
27
(
10
), p.
103119
.
19.
Mohamad
,
M. A.
, and
Sapsis
,
T. P.
,
2015
, “
Probabilistic Description of Extreme Events in Intermittently Unstable Dynamical Systems Excited by Correlated Stochastic Processes
,”
SIAM/ASA J. Uncertainty Quantif.
,
3
(
1
), pp.
709
736
.
20.
Noiray
,
N.
,
2017
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.
21.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2015
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbations in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
,
162
(
4
), pp.
1046
1062
.
22.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.
23.
Silva
,
C. F.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
24.
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Encountered When Modelling Self-Excited Thermoacoustic Oscillations With Artificial Neural Networks
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
367
379
.
25.
Boujo
,
E.
,
Denisov
,
A.
,
Schuermans
,
B.
, and
Noiray
,
N.
,
2016
, “
Quantifying Acoustic Damping Using Flame Chemiluminescence
,”
J. Fluid Mech.
,
808
, pp.
245
257
.
26.
Rouwenhorst
,
D.
,
Hermann
,
J.
, and
Polifke
,
W.
,
2017
, “
Online Monitoring of Thermoacoustic Eigenmodes in Annular Combustion Systems Based on a State-Space Model
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021502
.
27.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
28.
Lieuwen
,
T. C.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(
1
), pp.
3
17
.
29.
Bonciolini
,
G.
,
Boujo
,
E.
, and
Noiray
,
N.
,
2017
, “
Output-Only Parameter Identification of a Colored-Noise-Driven Van-Der-Pol Oscillator: Thermoacoustic Instabilities as an Example
,”
Phys. Rev. E
,
95
(
6
), p. 062217.
30.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.
31.
Stadlmair
,
N. V.
,
Hummel
,
T.
, and
Sattelmayer
,
T.
,
2017
, “
Thermoacoustic Damping Rate Determination From Combustion Noise Using Bayesian Statistics
,”
ASME J. Eng. Gas Turbines Power
,
140
(11), p. 111501.
32.
Li
,
L. K.
, and
Juniper
,
M. P.
,
2013
, “
Lock-in and Quasiperiodicity in Hydrodynamically Self-Excited Flames: Experiments and Modelling
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
947
954
.
33.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards, Bordeaux, France
.
You do not currently have access to this content.