Abstract

The flexibility of power plants is a critical feature in energy production environments nowadays, due to the high share of nondispatchable renewables. This fact dramatically increases the number of daily startups and load variations of power plants, pushing the current technologies to operate out of their optimal range. Furthermore, ambient conditions significantly influence the actual plant performance, creating deviations against the energy sold during the day-ahead and reducing the profit margins for the operators. A solution to reduce the impact of unpredicted ambient conditions, and to increase the flexibility margins of existing combined cycles, is represented by the possibility of dynamically controlling the temperature at compressor intake. At present, cooling down the compressor intake is a common practice to govern combined cycle performance in hot regions such as the Middle East and Africa, while heating up the compressor intake is commonly adopted to reduce the minimum environmental load (MEL). However, such applications involve relatively slow regulation of air intake, mainly coping with extreme operating conditions. The use of continuously varying, at a relatively quick pace, the air temperature at compressor intake, to mitigate ambient condition fluctuations and to cope with electrical market requirements, involves proper modeling of the combined cycle dynamic behavior, including the short-term and long-term impacts of intake air temperature variations. This work presents a dynamic modeling framework for the whole combined cycle applied to one of IREN Energia's Combined Cycle Units. The paper encloses the model validation against field data of the target power plant. The validated model is then used to show the potential in flexibility augmentation of properly adjusting the compressor intake temperature during operation.

References

1.
Autorità di Regolazione per Energia Reti e Ambiente
,
2016
, “Autorità di Regolazione per Energia Reti e Ambiente, Relazione 24 Giugno 2016 339/2016/I/EFR,”Autorità di Regolazione per Energia Reti e Ambiente, Italy, Relazione 24 Giugno 2016 339/2016/I/EFR, accessed Oct. 23, 2018, https://www.arera.it/allegati/docs/16/339-16.pdf
2.
Spiecker
,
S.
, and
Weber
,
C.
,
2011
, “
Integration of Fluctuating Renewable Energy—A German Case Study
,”
IEEE Power and Energy Society General Meeting
, Detroit, MI, July 24–28, No. 12303691.
3.
Kries
,
A.
,
Schyska
,
U. B.
, and
von Bremen
,
L.
,
2016
, “
The Optimal Share of Wave Power in a Highly Renewable Power System on the Iberian Peninsula
,”
Energy Rep.
,
2
, pp.
221
228
.10.1016/j.egyr.2016.09.002
4.
De Groot
,
M.
,
Crijns-Graus
,
W.
, and
Harmsen
,
R.
,
2017
, “
The Effects of Variable Renewable Electricity on Energy Efficiency and Full Load Hours of Fossil-Fired Power Plants in the European Union
,”
Energy
,
138
, pp.
575
589
.10.1016/j.energy.2017.07.085
5.
Verzijlbergh
,
R. A.
,
De Vries
,
L. J.
,
Dijkema
,
G. P. J.
, and
Herder
,
P. M.
,
2017
, “
Institutional Challenges Caused by the Integration of Renewable Energy Sources in the European Electricity Sector
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
660
667
.10.1016/j.rser.2016.11.039
6.
Kunitomi
,
K.
,
Kurita
,
A.
,
Okamoto
,
H.
,
Tada
,
Y.
,
Ihara
,
S.
,
Pourbeik
,
P.
,
Price
,
W. W.
,
Leirbukt
,
A. B.
, and
Sanchez-Gasca
,
J. J.
,
2001
, “
Modeling Frequency Dependency of Gas Turbine Output
,”
IEEE
Power Engineering Society Winter Meeting, Conference Proceeding
, Columbus, OH, Jan. 28–Feb. 1.10.1109/PESW.2001.916935
7.
Rossi
,
I.
,
Sorce
,
A.
,
Traverso
,
A.
, and
Pascucci
,
F.
,
2015
, “
A Simplified Hybrid Approach to Dynamic Model a Real HRSG
,”
ASME
Paper No. GT2015-42654. 10.1115/GT2015-42654
8.
Lalor
,
G.
,
Ritchie
,
J.
,
Flynn
,
D.
, and
O'Malley
,
M. J.
,
2005
, “
The Impact of Combined Cycle Gas Turbine Short-Term Dynamics on Frequency Control
,”
IEEE Trans. Power Syst.
,
20
(
3
), p.
1456
.10.1109/TPWRS.2005.852058
9.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas- and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
10.
Hentschel
,
J.
,
Babic
,
U.
, and
Hartmut
,
S.
,
2016
, “
A Parametric Approach for the Valuation of Power Plant Flexibility Options
,”
Energy Rep.
,
2
, pp.
40
47
.10.1016/j.egyr.2016.03.002
11.
Najjar
,
Y. S. H.
,
1996
, “
Enhancement of Performance of Gas Turbine Engines by Inlet Air Cooling and Cogeneration System
,”
Appl. Therm. Eng.
,
16
(
2
), pp.
163
173
.10.1016/1359-4311(95)00047-H
12.
Dawod
,
B.
,
Zurigat
,
Y. H.
, and
Bortmany
,
J.
,
2005
, “
Thermodynamic Assessment of Power Requirements and Impact of Different Gas Turbine Inlet-Air Cooling Techniques at Two Different Locations in Oman
,”
Appl. Therm. Eng.
,
25
, pp.
1579
1598
.10.1016/j.applthermaleng.2004.11.007
13.
Baakeem
,
S. S.
,
Orfi
,
J.
, and
Al-Ansary
,
H.
,
2018
, “
Performance Improvement of Gas Turbine Power Plants by Utilizing Turbine Inlet Air-Cooling (TIAC) Technologies in Riyadh, Saudi Arabia
,”
Appl. Therm. Eng.
,
138
, pp.
417
432
.10.1016/j.applthermaleng.2018.04.018
14.
Ameri
,
M.
, and
Hejazi
,
S. H.
,
2004
, “
The Study of Capacity Enhancement of the Chabahar Gas Turbine Installation Using an Absorption Chiller
,”
Appl. Therm. Eng.
,
24
(
1
), pp.
59
68
.10.1016/S1359-4311(03)00239-4
15.
Farzaneh-Gord
,
M.
, and
Deymi-Dashtebayaz
,
M.
,
2011
, “
Effect of Various Inlet Air Cooling Methods on Gas Turbine Performance
,”
Energy
,
36
(
2
), pp.
1196
1205
.10.1016/j.energy.2010.11.027
16.
Ibrahim
,
T. K.
,
Rahman
,
M. M.
, and
Abdalla
,
A. N.
,
2011
, “
Improvement of Gas Turbine Performance Based on Inlet Air Cooling Systems: A Technical Review
,”
Int. J. Phys. Sci.
,
6
(
4
), pp.
620
627
.
17.
Snaye
,
S.
,
Fardad
,
A.
, and
Mostakhdemi
,
M.
,
2011
, “
Thermoeconomic Optimization of an Ice Thermal Storage System for Gas Turbine Inlet Cooling
,”
Energy
,
36
, pp.
1057
1067
.10.1016/j.energy.2010.12.002
18.
Huang
,
Z.
,
Yang
,
C.
,
Yang
,
H.
, and
Ma
,
X.
,
2018
, “
Ability of Adjusting Heating/Power for Combined Cooling Heating and Power System Using Alternative Gas Turbine Operation Strategies in Combined Cycle Units
,”
Energy Convers. Manage.
,
173
, pp.
271
282
.10.1016/j.enconman.2018.07.062
19.
Giugno
,
A.
,
Cuneo
,
A.
,
Sorce
,
A.
, and
Piantelli
,
L.
,
2018
, “
Integration of Heat Pump and Gas Turbine Combined Cycle: Layout and Market Opportunity
,”
IGTC 18
, Brussels, Belgium.
20.
Sorce
,
A.
,
Giugno
,
A.
,
Piola
,
S.
, and
Guedez
,
R.
,
2018
, “
Thermo-Economic Analysis of a Combined Cycle Exploiting Inlet Conditioning Technologies for Power Modulation
,”
ASME
Paper No. GT2019-91541. 10.1115/GT2019-91541
21.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-UP AND Stress Evaluation: A Simplified Dynamic Approach
,”
Applied Energy
,
190
, pp.
880
890
.10.1016/j.apenergy.2016.12.141
22.
MathWorks
,
2007
, “
X-Steam: Thermodynamic Properties of Steam and Water X-Steam
,” The MathWorks, Inc., Natick, MA.
23.
Rossi
,
I.
,
Reveillere
,
A.
, and
Planchon
,
F.
,
2018
, “
Intelligent Predictive Control of a Pump-Heat Combined Cycle: Introduction and First Results
,”
IGTC 18
, Brussels, Belgium.
You do not currently have access to this content.