Abstract

Geometric uncertainties in the blade manufacturing process have important consequences in terms of dynamical properties of bladed disks. In this paper, we address the problem of modeling a full bladed disk composed by blades having uncertain geometry. The geometric imperfection of the blades is represented and analyzed according to a procedure previously presented by the authors, based on the principal component analysis (PCA) and the mesh morphing. The dynamical model of the full disk is constructed following the component mode synthesis (CMS) approach. The blade geometry is represented using a probabilistic model constructed from an experimental dataset. The effect of the geometric uncertainties is assessed using a linear uncertainty propagation approach, leading to a procedure that is fast enough to be embedded into a Monte Carlo simulation (MCS) loop.

References

1.
Sinha
,
A.
,
2017
,
Vibration of Nearly Periodic Structures and Mistuned Bladed Rotors
,
Cambridge University Press
,
Cambridge, UK
.
2.
Carassale
,
L.
,
Bruzzone
,
S.
,
Cavicchi
,
A.
, and
Marrè-Brunenghi
,
M.
,
2018
, “
Representation and Analysis of Geometric Uncertainties in Rotor Blades
,”
ASME
Paper No. GT2018-76385.10.1115/GT2018-76385
3.
de Klerk
,
D.
,
Rixen
,
D. J.
, and
Voormeeren
,
S. N.
,
2008
, “
General Framework for Dynamic Substructuring: History, Review, and Classification of Techniques
,”
AIAA J.
,
46
(
5
), pp.
1169
1181
.10.2514/1.33274
4.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
5.
Carassale
,
L.
, and
Maurici
,
M.
,
2017
, “
Interface Reduction in Craig–Bampton Component Mode Synthesis by Orthogonal Polynomial Series
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052504
.10.1115/1.4038154
6.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
89
99
.10.1115/1.1338947
7.
Castanier
,
M. P.
,
Tan
,
Y.-C.
, and
Pierre
,
C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(
6
), pp.
1182
1187
.10.2514/2.1433
8.
Tran
,
D.-M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(
2
), pp.
209
222
.10.1016/S0045-7949(00)00121-8
9.
Brahmi
,
K.
,
Bouhaddi
,
N.
, and
Fillod
,
R.
,
1995
, “
Reduction of Junction Degrees of Freedom in Certain Methods of Dynamic Substructure Synthesis
,”
13th International Modal Analysis Conference
, Nashville, TN, Feb. 13–16, pp.
1763
1769
.
10.
Hong
,
S.-K.
,
Epureanu
,
B. I.
, and
Castanier
,
M. P.
,
2013
, “
Next-Generation Parametric Reduced-Order Models
,”
Mech. Sys. Sig. Proc.
,
37
(1–2), pp.
403
421
.10.1016/j.ymssp.2012.12.012
11.
Balmès
,
E.
,
1996
, “
Use of Generalized Interface Degrees of Freedom in Component Mode Synthesis
,”
14th International Modal Analysis Conference
, Dearborn, MI, Feb. 12–15, pp.
204
210
.
12.
Aoyama
,
Y.
, and
Yagawa
,
G.
,
2001
, “
Component Mode Synthesis for Large-Scale Structural Eigenanalysis
,”
Comput. Struct.
,
79
(
6
), pp.
605
615
.10.1016/S0045-7949(00)00165-6
13.
Griffin
,
J. H.
, and
Hoosac
,
T. M.
,
1984
, “
Model Development and Statistical Investigation of Turbine Blade Mistiming
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
106
(
2
), pp.
204
210
.10.1115/1.3269170
14.
Heinze
,
K.
,
Friedl
,
W.
,
Vogeler
,
K.
, and
Voigt
,
M.
,
2009
, “
Probabilistic HCF-Investigation of Compressor Blades
,”
ASME
Paper No. GT2009-59899.10.1115/GT2009-59899
15.
Lamb
,
C. M.
,
2005
, “
Probabilistic Performance-Based Geometric Tolerancing of Compressor Blades
,” M.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.
16.
Ghiochel
,
D. M.
,
2001
, “
Stochastic Field Models for Aircraft Jet Engine Applications
,”
J. Aerosp. Eng.
,
14
(
4
), pp.
127
139
.10.1061/(ASCE)0893-1321(2001)14:4(127)
17.
Brown
,
J. M.
,
Slater
,
J.
, and
Grandhi
,
R. V.
,
2003
, “
Probabilistic Analysis of Geometric Uncertainty Effects on Blade Modal Response
,”
ASME
Paper No. GT2003-38557.10.1115/GT2003-38557
18.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.10.1115/1.2749293
19.
Lange
,
A.
,
Vogeler
,
K.
,
Gümmer
,
V.
,
Schrapp
,
H.
, and., and
Clemen
,
C.
,
2009
, “
Introduction of a Parameter Based Compressor Blade Model for Considering Measured Geometry Uncertainties in Numerical Simulation
,”
ASME
Paper No. GT2009-59937.10.1115/GT2009-59937
20.
Maywald
,
T.
,
Backhaus
,
T.
,
Schrape
,
S.
, and
Kühhorn
,
A.
,
2017
, “
Geometric Model Update of Blisks and Its Experimental Validation for a Wide Frequency Range
,”
ASME
Paper No. GT2017-63446.10.1115/GT2017-63446
21.
Holtzhausen
,
S.
,
Schreiber
,
S. S.
,
Schöne
,
C. H.
,
Stelzer
,
R. R.
,
Heinze
,
K. K.
, and., and
Lange
,
A. A.
,
2009
, “
Highly Accurate Automated 3D Measuring and Data Conditioning for Turbine and Compressor Blades
,”
ASME
Paper No. GT2009-59902.10.1115/GT2009-59902
22.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
Springer Verlag
,
New York
.
You do not currently have access to this content.