Abstract

Higher shares of variable renewable generation have already raised the demand for energy storage and network services in the power sector. As this trend is expected to continue, the combination of these services in a large scale will be imperative toward a carbon-free power sector. A very promising way to perform this task without any additional emissions is through stoichiometric combustion of the electrolysis products (H2 and O2) in steam and the injection of the generated steam in a conventional steam cycle. However, this can be done only if the product steam has only traces of the two reactants in it, in order to avoid damage of downstream components. The amount of residual gas in the product steam is a direct function of the combustion efficiency. This work analyzes the combustion efficiency of a H2/O2 combustor under steam dilution. As the product gas of such a combustor is primarily steam, the intended efficiency measurement is very challenging and cannot be performed with conventional methods. Instead, an in situ measurement of oxygen and hydrogen is applied. The respective diagnostics and challenges are presented along with the combustion efficiency results. Moreover, a combustor design study is carried out and different flame types (jet and swirl-stabilized flames) are compared. The initial results demonstrate that steam-diluted H2/O2 combustion can achieve an efficiency close to 100%.

References

1.
UNFCCC,
2015
,
United Nations Framework Convention on Climate Change, Paris Agreement, UN Climate Conference
, United Nations Treaty Collection, Chap. XXVII 7.
2.
ENTSO-E,
2015
, “
Scenario Outlook and Adequacy Forecast
,” Brussels, Belgium, Report.
3.
MacDonald
,
M.
,
2013
, “
Impact Assessment on European Electricity Balancing Market
,” Victory House, Brighton, UK, Report No. 299949/TRD/EFR/01/E.
4.
Kousksou
,
T.
,
Bruel
,
P.
,
Jamil
,
A.
,
El Rhafiki
,
T.
, and
Zeraouli
,
Y.
,
2014
, “
Energy Storage: Applications and Challenges
,”
Sol. Energy Mater. Sol. Cells
,
120
(Pt. A), pp.
59
80
.10.1016/j.solmat.2013.08.015
5.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
.10.1016/j.apenergy.2014.09.081
6.
Bancalari
,
E.
,
Chan
,
P.
, and
Diakunchak
,
I. S.
,
2006
, “
Advanced Hydrogen Gas Turbine Development Program
,”
23rd International Pittsburgh Coal Conference
, Pittsburgh, PA, p. P141.
7.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
8.
Stathopoulos
,
P.
,
Sleem
,
T.
, and
Paschereit
,
C. O.
,
2017
, “
Steam Generation With Stoichiometric Combustion of H2/O2 as a Way to Simultaneously Provide Primary Control Reserve and Energy Storage
,”
Appl. Energy
,
205
, pp.
692
702
.10.1016/j.apenergy.2017.07.094
9.
Dybe
,
S.
,
Tom
,
T.
, and
Stathopoulos
,
P.
,
2019
, “
Second Law Analysis of an Energy Storage System Consisting of an Electrolysis Plant and the Graz Cycle With Internal H2/O2 Combustion
,” ASME Paper No. GT2019-91534.
10.
Soufi
,
M. T.
, and
Fujii
,
T.
,
Sugimoto
, K.
, and
Asano
, H.
,
2004
, “
A New Rankine Cycle for Hydrogen-Fired Power Generation Plants and Its Exergetic Efficiency
,” Int. J. Exergy, 1(1), pp.
29
46
.
11.
Mitsugi
,
C.
,
Harumi
,
A.
, and
Kenzo
,
F.
,
1998
, “
WE-NET: Japanese Hydrogen Program
,”
Int. J. Hydrogen Energy
,
23
(
3
), pp.
159
165
.10.1016/S0360-3199(97)00042-6
12.
Bannister
,
R. L.
,
Newby
,
R. A.
, and
Yang
,
W.-C.
,
1999
, “
Final Report on the Development of a Hydrogen-Fueled Combustion Turbine Cycle for Power Generation
,”
ASME
Paper No. 98-GT-021.10.1115/98-GT-021
13.
Sternfeld
,
H. J.
, and
Heinrich
,
P.
,
1989
, “
A Demonstration Plant for the Hydrogen/Oxygen Spinning Reserve
,”
Int. J. Hydrogen Energy
,
14
(
10
), pp.
703
716
.10.1016/0360-3199(89)90087-6
14.
Sternfeld
,
H. J.
,
1995
, “
Capacity Control of Power Stations by O2/H2 Rocket Combustor Technology
,”
Acta Astron.
,
37
, pp.
11
19
.
15.
Malyshenko
,
S. P.
,
Gryaznov
,
A. N.
, and
Filatov
,
N. I.
,
2004
, “
High-Pressure H2/O2-Steam Generators and Their Possible Applications
,”
Int. J. Hydrogen Energy
,
29
(
6
), pp.
589
596
.10.1016/j.ijhydene.2003.08.004
16.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.
17.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111513
.
18.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382.10.1115/GT2015-43382
19.
Schimek
,
S.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
, and
Paschereit
,
C. O.
,
2015
, “
Blue Combustion: Stoichiometric Hydrogen—Oxygen Combustion Under Humidified Conditions
,”
ASME
Paper No. GT2015-43149.10.1115/GT2015-43149
20.
Tanneberger
,
T.
,
Schimek
,
S.
,
Kossatz
,
M.
,
Paschereit
,
C. O.
, and
Stathopoulos
,
P.
,
2017
, “
Development of a Swirl-Stabilized H2/O2 Combustion System Under Humidified Conditions
,”
Digital Eighth European Combustion Meeting (ECM 2017)
, Dubrovnik, Croatia, pp.
1618
1623
.
21.
Brailsford
,
A.
,
Yussouff
,
M.
, and
Logothetis
,
E.
,
1997
, “
A First-Principles Model of the Zirconia Oxygen Sensor
,”
Sens. Actuators, B
,
44
(
1–3
), pp.
321
326
.10.1016/S0925-4005(97)00137-8
22.
Awtry
,
A. R.
,
Fleming
,
J. W.
, and
Ebert
,
V.
,
2006
, “
Simultaneous Diode-Laser-Based In Situ Measurement of Liquid Water Content and Oxygen Mole Fraction in Dense Water Mist Environments
,”
Opt. Lett.
,
31
(
7
), p.
900
.10.1364/OL.31.000900
23.
Schlosser
,
H. E.
,
Wolfrum
,
J.
,
Ebert
,
V.
,
Williams
,
B. A.
,
Sheinson
,
R. S.
, and
Fleming
,
J. W.
,
2002
, “
In Situ Determination of Molecular Oxygen Concentrations in Full-Scale Fire-Suppression Tests Using Tunable Diode Laser Absorption Spectroscopy
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
353
360
.10.1016/S1540-7489(02)80047-5
24.
Bürkle
,
S.
,
Becker
,
L. G.
,
Dreizler
,
A.
, and
Wagner
,
S.
,
2018
, “
Experimental Investigation of the Flue Gas Thermochemical Composition of an Oxy-Fuel Swirl Burner
,”
Fuel
,
231
, pp.
61
72
.10.1016/j.fuel.2018.05.039
25.
Silver
,
J. A.
,
1992
, “
Frequency-Modulation Spectroscopy for Trace Species Detection: Theory and Comparison Among Experimental Methods
,”
Appl. Opt.
,
31
(
6
), p.
707
.10.1364/AO.31.000707
26.
Kluczynski
,
P.
,
Gustafsson
,
J.
,
Lindberg
,
Å. M.
, and
Axner
,
O.
,
2001
, “
Wavelength Modulation Absorption Spectrometry—An Extensive Scrutiny of the Generation of Signals
,”
Spectrochim. Acta, Part B
,
56
(
8
), pp.
1277
1354
.10.1016/S0584-8547(01)00248-8
27.
Neethu
,
S.
,
Verma
,
R.
,
Kamble
,
S.
,
Radhakrishnan
,
J.
,
Krishnapur
,
P.
, and
Padaki
,
V.
,
2014
, “
Validation of Wavelength Modulation Spectroscopy Techniques for Oxygen Concentration Measurement
,”
Sens. Actuators, B
,
192
, pp.
70
76
.10.1016/j.snb.2013.10.070
28.
BIPM, IFCC, ISO, and IUPAC,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty of Measurement
,” Standard No. JCGM 100: 2008. Citado en las, 167.
29.
Fuller
,
W. A.
,
1987
,
Measurement Error Models
,
Wiley
,
New York
.
You do not currently have access to this content.