Abstract

In this study, a novel design for ring dampers is proposed, where the concept of tuned vibration absorbers is leveraged to substantially increase damper effectiveness while minimizing potential stresses near the blade root. Tuned absorbers have been used in the past to reduce the forced response amplitudes of both mechanical and civil structures. The absorber natural frequency is tuned to the targeted frequency of the host structure where it is attached. The vibration reduction mechanism relies on energy transfer from the host structure to the absorber. The novel design technique proposed here uses a vibration absorber approach to achieve energy transfer from the blisk to the damper, which leads to larger damper motion. This enables energy dissipation due to friction, reducing vibrations even in blade-dominated modes. An academic finite element model of a blisk with a ring damper is used to demonstrate the novel tuned damper concept and design technique. The geometric mistuning of the damper due to the presence of a gap in the ring structure is also taken into account. The results demonstrate the validity of the proposed tuned damper concept, showing a substantial vibration amplitude reduction compared to the linear baseline results, in which the damper is not tuned or absent.

References

1.
Castanier
,
M.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
2.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part ii: Forced Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
439
449
.10.1115/1.3269548
3.
Patsias
,
S.
,
Saxton
,
C.
, and
Shipton
,
M.
,
2004
, “
Hard Damping Coatings: An Experimental Procedure for Extraction of Damping Characteristics and Modulus of Elasticity
,”
Mater. Sci. Eng.: A
,
370
(
1–2
), pp.
412
416
.10.1016/j.msea.2003.07.020
4.
Cross
,
K.
,
Lull
,
W.
,
Newman
,
R.
, and
Cavanagh
,
A. R.
,
1973
, “
Potential of Graded Coatings in Vibration Damping
,”
J. Aircr.
,
10
(
11
), pp.
689
691
.10.2514/3.60284
5.
Olson
,
B. J.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
2005
, “
Order-Tuned Vibration Absorbers for Cyclic Rotating Flexible Structures
,”
ASME
Paper No. DETC2005-84641. 10.1115/DETC2005-84641
6.
Hartung
,
A.
,
Retze
,
U.
, and
Hackenberg
,
H.
,
2017
, “
Impulse Mistuning of Blades and Vanes
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072502
.10.1115/1.4035594
7.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Adaptive Microslip Projection for Reduction of Frictional and Contact Nonlinearities in Shrouded Blisks
,”
J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041016
.10.1115/1.4033003
8.
Hüls
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2018
, “
Combined Airfoil and Snubber Design Optimization of Turbine Blades With Respect to Friction Damping
,”
ASME J. Turbomach.
,
140
(
8
), p.
081007
.10.1115/1.4040679
9.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading—Part 1: Stick-Slip Contact Kinematics
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
410
417
.10.1115/1.2818138
10.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading—Part 2: Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
418
423
.10.1115/1.2818139
11.
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
The Effect of Underplatform Dampers on the Forced Response of Bladed Disks by a Coupled Static/Dynamic Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
363
375
.10.1016/j.ijnonlinmec.2010.10.001
12.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
13.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2019
, “
Criteria for Best Performance of Pre-Optimized Solid Dampers
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
042502
.10.1115/1.4040820
14.
Siewert
,
C.
,
Panning
,
L.
,
Schmidt-Fellner
,
A.
, and
Kayser
,
A.
,
2006
, “
The Estimation of the Contact Stiffness for Directly and Indirectly Coupled Turbine Blading
,”
ASME
Paper No. GT2006-90473. 10.1115/GT2006-90473
15.
Gastaldi
,
C.
, and
Gola
,
M. M.
,
2015
, “
A Random Sampling Strategy for Tuning Contact Parameters of Underplatform Dampers
,”
ASME
Paper No. GT2015-42834. 10.1115/GT2015-42834
16.
Laxalde
,
D.
,
Thouverez
,
F.
,
Sinou
,
J.
, and
Lombard
,
J.
,
2007
, “
Qualitative Analysis of Forced Response of Blisks With Friction Ring Dampers
,”
Eur. J. Mech.—A/Solids
,
26
(
4
), pp.
676
687
.10.1016/j.euromechsol.2006.10.002
17.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2008
, “
Non-Linear Vibrations of Multi-Stage Bladed Disks Systems With Friction Ring Dampers
,”
ASME
Paper No. DETC2007-34473. 10.1115/DETC2007-34473
18.
Laxalde
,
D.
,
Gibert
,
C.
, and
Thouverez
,
F.
,
2008
, “
Experimental and Numerical Investigations of Friction Rings Damping of Blisks
,”
ASME
Paper No. GT2008-50862. 10.1115/GT2008-50862
19.
Baek
,
S.
, and
Epureanu
,
B. I.
,
2017
, “
Reduced Order Modeling of Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
139
(
6
), p.
061011
.10.1115/1.4036952
20.
Tang
,
W. H.
, and
Epureanu
,
B. I.
,
2017
, “
Nonlinear Dynamics of Mistuned Bladed Disks With Ring Dampers
,”
Int. J. Non-Linear Mech.
,
97
, pp.
30
40
.10.1016/j.ijnonlinmec.2017.08.001
21.
Tang
,
W.
,
Baek
,
S.
, and
Epureanu
,
B.
,
2017
, “
Reduced-Order Models for Blisks With Small and Large Mistuning and Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012507
.10.1115/1.4034212
22.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Courier Corporation
.
23.
Sun
,
J.
,
Jolly
,
M. R.
, and
Norris
,
M.
,
1995
, “
Passive, Adaptive and Active Tuned Vibration Absorbers-a Survey
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
234
242
.10.1115/1.2836462
24.
Gutierrez Soto
,
M.
, and
Adeli
,
H.
,
2013
, “
Tuned Mass Dampers
,”
Arch. Comput. Methods Eng.
,
20
(
4
), pp.
419
431
.10.1007/s11831-013-9091-7
25.
Igusa
,
T.
, and
Xu
,
K.
,
1994
, “
Vibration Control Using Multiple Tuned Mass Dampers
,”
J. Sound Vib.
,
175
(
4
), pp.
491
503
.10.1006/jsvi.1994.1341
26.
Jangid
,
R.
,
1995
, “
Dynamic Characteristics of Structures With Multiple Tuned Mass Dampers
,”
Struct. Eng. Mech.
,
3
(
5
), pp.
497
509
.10.12989/sem.1995.3.5.497
27.
Ozer
,
M. B.
, and
Royston
,
T. J.
,
2005
, “
Extending Den Hartog's Vibration Absorber Technique to Multi-Degree-of-Freedom Systems
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
341
350
.10.1115/1.1924642
28.
Mitra
,
M.
,
Lupini
,
A.
, and
Epureanu
,
B. I.
,
2019
, “
A Study on the Application of Tuned Vibration Absorbers to Nominally Cyclic Structures
,”
ASME
Paper No. GT2019–90167.
29.
Elias
,
S.
, and
Matsagar
,
V.
,
2017
, “
Research Developments in Vibration Control of Structures Using Passive Tuned Mass Dampers
,”
Annu. Rev. Control
,
44
, pp.
129
156
.10.1016/j.arcontrol.2017.09.015
30.
Inaudi
,
J. A.
, and
Kelly
,
J. M.
,
1995
, “
Mass Damper Using Friction-Dissipating Devices
,”
J. Eng. Mech.
,
121
(
1
), pp.
142
149
.10.1061/(ASCE)0733-9399(1995)121:1(142)
31.
Almazán
,
J. L.
,
la Llera
,
J. C. D.
,
Inaudi
,
J. A.
,
López-García
,
D.
, and
Izquierdo
,
L. E.
,
2007
, “
A Bidirectional and Homogeneous Tuned Mass Damper: A New Device for Passive Control of Vibrations
,”
Eng. Struct.
,
29
(
7
), pp.
1548
1560
.10.1016/j.engstruct.2006.09.005
32.
Pisal
,
A. Y.
, and
Jangid
,
R. S.
,
2016
, “
Dynamic Response of Structure With Tuned Mass Friction Damper
,”
Int. J. Adv. Struct. Eng.
,
8
(
4
), pp.
363
377
.10.1007/s40091-016-0136-7
33.
Gewei
,
Z.
, and
Basu
,
B.
,
2011
, “
A Study on Friction-Tuned Mass Damper: Harmonic Solution and Statistical Linearization
,”
J. Vib. Control
,
17
(
5
), pp.
721
731
.10.1177/1077546309354967
34.
Marinescu
,
O.
,
Epureanu
,
B. I.
, and
Banu
,
M.
,
2011
, “
Reduced Order Models of Mistuned Cracked Bladed Disks
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051014
.10.1115/1.4003940
35.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
,
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,
InTech
, pp.
301
334
.
36.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
37.
Cardona
,
A.
,
Coune
,
T.
,
Lerusse
,
A.
, and
Geradin
,
M.
,
1994
, “
A Multiharmonic Method for Nonlinear Vibration Analysis
,”
Int. J. Numer. Methods Eng.
,
37
(
9
), pp.
1593
1608
.10.1002/nme.1620370911
38.
Menq
,
C. H.
,
Griffin
,
J. H.
, and
Bielak
,
J.
,
1986
, “
The Influence of Microslip on Vibratory Response—Part II: A Comparison With Experimental Results
,”
J. Sound Vib.
,
107
(
2
), pp.
295
307
.10.1016/0022-460X(86)90239-7
39.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2010
, “
Forced Response Analysis of Integrally Bladed Disks With Friction Ring Dampers
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011013
.10.1115/1.4000763
You do not currently have access to this content.