The work presented in this paper combines multiple nonsynchronous planar measurements to reconstruct an estimate of a synchronous, instantaneous flow field of the whole measurement set. Temporal information is retained through the linear stochastic estimation (LSE) technique. The technique is described, applied, and validated with a simplified combustor and fuel swirl nozzles (FSN) geometry flow for which three-component, three-dimensional (3C3D) flow information is available. Using the 3C3D dataset, multiple virtual “planes” may be extracted to emulate single planar particle image velocimetry (PIV) measurements and produce the correlations required for LSE. In this example, multiple parallel planes are synchronized with a single perpendicular plane that intersects each of them. As the underlying dataset is known, it therefore can be directly compared to the estimated velocity field for validation purposes. The work shows that when the input time-resolved planar velocity measurements are first proper orthogonal decomposition (POD) filtered, high correlation between the estimations and the validation velocity volumes are possible. This results in estimated full volume velocity distributions, which are available at the same time instance as the input field—i.e., a time-resolved velocity estimation at the frequency of the single input plane. While 3C3D information is used in the presented work, this is necessary only for validation; in true application, planar technique would be used. The study concludes that provided the number of sensors used for input LSE exceeds the number of POD modes used for prefiltering, it is possible to achieve correlation greater than 99%.

References

1.
Dunham
,
D.
,
Spencer
,
A.
,
Mcguirk
,
J. J.
, and
Dianat
,
M.
,
2008
, “
Comparison of URANS and LES CFD Methodologies for Air Swirl Fuel Injectors
,”
ASME
Paper No. GT2008-50278.
2.
Treleaven
,
N. C. W.
,
Su
,
J.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2017
, “
The Response to Incident Acoustic Waves of the Flow Field Produced by a Multi-Passage Lean-Burn Aero-Engine Fuel Injector
,”
ASME
Paper No. GT2017-64527.
3.
Treleaven
,
N. C. W.
,
Su
,
J.
,
Garmory
,
A.
,
Page
,
G. J.
, and
Juniper
,
M.
,
2018
, “
The Identification and Prediction of Helical Modes Induced by a Multi-Passage Swirl Stabilised Lean Burn Aero-Engine Fuel Injector Under Steady State and Acoustically Forced Conditions
,”
ASME
Paper No. GT2018-75552.
4.
Barnhart
,
D. H.
,
Adrian
,
R. J.
, and
Papen
,
G. C.
,
1994
, “
Phase-Conjugate Holographic System for High-Resolution Particle-Image Velocimetry
,”
Appl. Opt.
,
33
(
30
), p.
7159
.
5.
Meinhart
,
C. D.
,
Barnhart
,
D. H.
, and
Adrian
,
R. J.
,
1996
, “
Interrogation and Validation of Three-Dimensional Vector Fields
,”
Developments in Laser Techniques and Applications to Fluid Mechanics
, Springer, Berlin, pp.
379
391
.
6.
Meng
,
H.
, and
Hussain
,
F.
,
1995
, “
In-Line Recording and Off-Axis Viewing Technique for Holographic Particle Velocimetry
,”
Appl. Opt.
,
34
(
11
), p.
1827
.
7.
Scherer
,
J. O.
, and
Bernal
,
L. P.
,
1997
, “
In-Line Holographic Particle Image Velocimetry for Turbulent Flows
,”
Appl. Opt.
,
36
(
35
), pp.
9309
9318
.
8.
Pu
,
Y.
, and
Meng
,
H.
,
2005
, “
Four-Dimensional Dynamic Flow Measurement by Holographic Particle Image Velocimetry
,”
Appl. Opt.
,
44
(
36
), pp.
7697
7708
.
9.
Spencer
,
A.
,
Brend
,
M.
,
Butcher
,
D.
,
Dunham
,
D.
,
Cheng
,
L.
, and
Hollis
,
D.
,
2018
, “
Tomographic PIV in the Near Field of a Swirl-Stabilised Fuel Injector
,”
ASME
Paper No. GT2018-75201.
10.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kahlet
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhams
,
J.
,
2018
, “
Techniques for 3D-PIV
,”
Particle Image Velocimetry
,
Springer
,
Cham, Switzerland
, pp.
309
365
.
11.
Schanz
,
D.
,
Schröder
,
A.
, and
Gesemann
,
S.
,
2014
, “
Shake the Box'—A 4D PTV Algorithm: Accurate and Ghostless Reconstruction of Lagrangian Tracks in Densely Seeded Flows
,”
International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7--10, pp.
7
10
.
12.
Schanz
,
D.
,
Schröder
,
A.
,
Gesemann
,
S.
, and
Wieneke
,
B.
,
2015
, “
Shake the Box': Lagrangian Particle Tracking in Densely Seeded Flows at High Spatial Resolution
,”
Ninth International Symposium on Turbulence Shear Flow Phenomena
(
TFSP-9
), Melbourne, Australia, June 30–July 3, Paper No. 7C-4.https://www.researchgate.net/publication/312169667_'Shake_The_Box'_Lagrangian_particle_tracking_in_densely_seeded_flows_at_high_spatial_resolution
13.
Brücker
,
C.
,
1995
, “
Digital-Particle-Image-Velocimetry (DPIV) in a Scanning Light-Sheet: 3D Starting Flow Around a Short Cylinder
,”
Exp. Fluids
,
19
(
4
), pp.
255
263
.
14.
Ponitz
,
B.
,
Sastuba
,
M.
, and
Brücker
,
C.
,
2016
, “
4D Visualization Study of a Vortex Ring Life Cycle Using Modal Analyses
,”
J. Vis.
,
19
(
2
), pp.
237
259
.
15.
Volpe
,
R.
,
Devinant
,
P.
, and
Kourta
,
A.
,
2015
, “
Experimental Characterization of the Unsteady Natural Wake of the Full-Scale Square Back Ahmed Body: Flow Bi-Stability and Spectral Analysis
,”
Exp. Fluids
,
56
(
5
), pp.
1
22
.
16.
Perry
,
A.-K.
,
Almond
,
M.
,
Passmore
,
M.
, and
Littlewood
,
R.
,
2016
, “
The Study of a Bi-Stable Wake Region of a Generic Squareback Vehicle Using Tomographic PIV
,”
SAE Int. J. Passenger Cars–Mech. Syst.
,
9
(
2
), pp.
743
753
.
17.
Stohr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2011
, “
Phase-Resolved Characterization of Vortex-Flame Interaction in a Turbulent Swirl Flame
,”
Exp. Fluids
,
51
(
4
), pp.
1153
1167
.
18.
Martinelli
,
F.
,
Cozzi
,
F.
, and
Coghe
,
A.
,
2012
, “
Phase-Locked Analysis of Velocity Fluctuations in a Turbulent Free Swirling Jet After Vortex Breakdown
,”
Exp. Fluids
,
53
(
2
), pp.
437
449
.
19.
Adrian
,
R. J.
,
1977
, “
On the Role of Conditional Averages in Turbulence Theory
,”
Turbul. Liq.
, pp.
323
332
.
20.
Adrian
,
R. J.
,
1979
, “
Conditional Eddies in Isotropic Turbulence
,”
Phys. Fluids
,
22
(
11
), pp.
2065
2070
.
21.
Adrian
,
R. J.
,
1996
, “
Stochastic Estimation of the Structure of Turbulent Fields
,”
Eddy Structure Identification
,
J. P.
Bonnet
, ed.,
Springer
,
Vienna, Austria
, pp.
145
195
.
22.
Tung
,
T. C.
, and
Adrian
,
R. J.
,
1980
, “
Higher-Order Estimates of Conditional Eddies in Isotropic Turbulence
,”
Phys. Fluids
,
23
(
7
), pp.
1469
1470
.
23.
Tinney
,
C. E.
,
Coiffet
,
F.
,
Delville
,
J.
,
Hall
,
A. M.
,
Jordan
,
P.
, and
Glauser
,
M. N.
,
2006
, “
On Spectral Linear Stochastic Estimation
,”
Exp. Fluids
,
41
(
5
), pp.
763
775
.
24.
Gutmark
,
E. J.
,
Verfaillie
,
S.
,
Bonnet
,
J.-P.
, and
Grinstein
,
F.
,
2006
, “
Linear Stochastic Estimation of a Swirling Jet
,”
AIAA J.
,
44
(
3
), pp.
457
468
.
25.
Hosseini
,
Z.
,
Martinuzzi
,
R. J.
, and
Noack
,
B. R.
,
2015
, “
Sensor-Based Estimation of the Velocity in the Wake of a Low-Aspect-Ratio Pyramid
,”
Exp. Fluids
,
56
(
13
).
26.
Taylor
,
J. A.
, and
Glauser
,
M. N.
,
2004
, “
Towards Practical Flow Sensing and Control Via POD and LSE Based Low-Dimensional Tools
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
337
345
.
27.
Naguib
,
A. M.
,
Wark
,
C. E.
, and
Juckenhöfel
,
O.
,
2001
, “
Stochastic Estimation and Flow Sources Associated With Surface Pressure Events in a Turbulent Boundary Layer
,”
Phys. Fluids
,
13
(
9
), pp.
2611
2626
.
28.
Hudy
,
L. M.
, and
Naguib
,
A.
,
2007
, “
Stochastic Estimation of a Separated-Flow Field Using Wall-Pressure-Array Measurements
,”
Phys. Fluids
,
19
(
2
), P. 024103.
29.
Arnault
,
A.
,
Dandois
,
J.
,
Monnier
,
J. C.
,
Delva
,
J.
, and
Foucaut
,
J. M.
,
2016
, “
Analysis of the Filtering Effect of the Stochastic Estimation and Accuracy Improvement by Sensor Location Optimization
,”
Exp. Fluids
,
57
(
12
), pp.
1
22
.
30.
Muradore
,
R.
,
Bezzo
,
F.
, and
Barolo
,
M.
,
2006
, “
Optimal Sensor Location for Distributed-Sensor Systems Using Multivariate Regression
,”
Comput. Chem. Eng.
,
30
(
3
), pp.
521
534
.
31.
Kerhervé
,
F.
,
Roux
,
S.
, and
Mathis
,
R.
,
2017
, “
Combining Time-Resolved Multi-Point and Spatially-Resolved Measurements for the Recovering of Very-Large-Scale Motions in High Reynolds Number Turbulent Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
102
115
.
32.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulence
,” In A. M. Yaglom and V. I. Tatarski, Eds., Atmospheric Turbulence and Wave Propagation, Nauka, Moscow, pp.
166
178
.
33.
Sirovich
,
L.
,
1987
, “
Turbulence and Dynamics of Coherent Structures—Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
34.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.
35.
Butcher
,
D.
,
Spencer
,
A.
, and
Chen
,
R.
,
2018
, “
Influence of Asymmetric Valve Strategy on Large-Scale and Turbulent In-Cylinder Flows
,”
Int. J. Engine Res.
,
19
(
6
), pp.
631
642
.
36.
Podvin
,
B.
,
Nguimatsia
,
S.
,
Foucaut
,
J. M.
,
Cuvier
,
C.
, and
Fraigneau
,
Y.
,
2018
, “
On Combining Linear Stochastic Estimation and Proper Orthogonal Decomposition for Flow Reconstruction
,”
Exp. Fluids
,
59
(
3
), pp.
1
12
.
37.
Butcher
,
D.
, and
Spencer
,
A.
,
2019
, “
Linear Stochastic Estimation of Coherent Structures in Internal Combustion Engines Flow
,”
Int. J. Engine Res
.
38.
Midgley
,
K.
,
Spencer
,
A.
, and
McGuirk
,
J. J.
,
2005
, “
Unsteady Flow Structures in Radial Swirler Fed Fuel Injectors
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), p.
755
.
39.
Spencer
,
A.
,
McGuirk
,
J. J.
, and
Midgley
,
K.
,
2008
, “
Vortex Breakdown in Swirling Fuel Injector Flows
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021503
.
You do not currently have access to this content.