Heat transfer effects play a significant role in assessing the performance of automotive turbochargers. Thermal effects are becoming increasingly relevant due to reduced machine sizes and increased exhaust gas temperatures. In this work, a study of the individual energy flows is conducted by simulation of a complete turbocharger comprising compressor (dC = 51 mm), turbine, and bearing housing using conjugate heat transfer. Special focus is given to the analysis of the various heat flows occurring in the machine aiming to identify the major heat transfer paths and their sensitivity with respect to varying operating conditions. Cooling of the bearing housing is shown to be a powerful thermal isolator mitigating the heat transferred to the compressor by up to 60%. Moreover, the rotating speed largely dictates the amount of heat transfer in the compressor and the direction of the heat flow: Whereas at low speeds (22% of max. speed), 117 W are introduced into the fluid and 338 W are being discharged from the fluid at maximum speed. At high speed operation, the heat transfer is shown to be insignificant compared to the aerodynamic work. At low speeds, however, it can reach up to 35% of the aerodynamic work. While the turbine inlet temperature largely governs the overall heat that is lost from the exhaust gas passing the turbine (from 630 W at 300 °C up to 3.72 kW at 1050 °C), only a minor effect on the compressor heat transfer is detected.

References

1.
Burke
,
R. D.
,
2014
, “
Analysis and Modelling of the Transient Thermal Behaviour of Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101511
.
2.
Cormerais
,
M.
,
Chesse
,
P.
, and
Hetet
,
J.-F.
,
2009
, “
Turbocharger Heat Transfer Modeling Under Steady and Transient Conditions
,”
Int. J. Thermodyn.
,
12
(
4
), p.
193
.
3.
Burke
,
R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
, and
Reyes-Belmonte
,
M. A.
,
2014
, “
Modelling of Turbocharger Heat Transfer Under Stationary and Transient Engine Operating Conditions
,”
11th International Conference on Turbochargers and Turbocharging
, Vol.
1384
, p.
103
.
4.
Uhlmann
,
T.
,
2013
, “
Vermessung und Modellierung von Abgasturboladern für die Motorprozessrechnung
,” Ph.D. thesis, RWTH Aachen University, Aachen, Germany.
5.
Lüddecke
,
B.
,
Filsinger
,
D.
,
Ehrhard
,
J.
, and
Bargende
,
M.
,
2012
, “
Heat Transfer Correction and Torque Measurement for Wide Range Performance Measurement of Exhaust Gas Turbocharger Turbines
,”
17th Supercharging Conference Dresden
, Germany.
6.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2012
, “
Heat Transfer Analysis in a Turbocharger Turbine: An Experimental and Computational Evaluation
,”
Appl. Therm. Eng.
,
38
, pp.
58
77
.
7.
Casey
,
M. V.
, and
Fesich
,
T. M.
,
2010
, “
The Efficiency of Turbocharger Compressors With Diabatic Flows
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072302
.
8.
Shaaban
,
S.
,
2004
, “
Experimental Investigation and Extended Simulation of Turbocharger Non-Adiabatic Performance
,” Ph.D. thesis, University of Hannover, Hannover, Germany.
9.
Baines
,
N.
,
Wygant
,
K. D.
, and
Dris
,
A.
,
2010
, “
The Analysis of Heat Transfer in Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042301
.
10.
Aghaali
,
H.
,
Angström
,
H.-E.
, and
Serrano
,
J.
,
2015
, “
Evaluation of Different Heat Transfer Conditions on an Automotive Turbocharger
,”
ImechE Int. J. Engine Res.
,
16
(
2
), pp.
137
151
.
11.
Bohn
,
D.
,
Heuer
,
T.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger—Part I: Numerical Results
,”
ASME
Paper No. GT2003-38445.
12.
Heuer
,
T.
,
Engels
,
B.
,
Klein
,
A.
, and
Heger
,
H.
,
2006
, “
Numerical and Experimental Analysis of the Thermo-Mechanical Load on Turbine Wheels of Turbochargers
,”
ASME
Paper No. GT2006-90526.
13.
Burke
,
R.
,
Copeland
,
C.
,
Duda
,
T.
, and
Reyes
,
M.
,
2015
, “
Lumped Capacitance and 3D CFD Conjugate Heat Transfer Modelling of an Automotive Turbocharger
,”
ASME
Paper No. GT2015–42612.
14.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2006
, “
A Conjugate Heat Transfer Method Applied to Turbomachinery
,”
ECCOMAS CFD
2006: European Conference on Computational Fluid Dynamics
, Egmond aan Zee, The Netherlands, Sept. 5–8.
15.
Heuer
,
T.
,
2005
,
Wechselwirkung Zwischen Strömung und Wärmetransport an Gasturbinenschaufeln und Einem Ölgekühlten Abgasturbolader
,
Shaker Verlag
, Herzogenrath, Germany.
16.
Heuer
,
T.
, and
Engels
,
B.
,
2007
, “
Numerical Analysis of the Heat Transfer in Radial Turbine Wheels of Turbo Chargers
,”
ASME
Paper No. GT-2007-27835.
17.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
,
Reyes-Belmonte
,
M.
, and
Lefebvre
,
A.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications
,”
SAE Int. J. Engines
,
6
(
2
), pp.
716
728
.
18.
Hoepke
,
B.
,
Uhlmann
,
T.
,
Pischinger
,
S.
,
Lueddecke
,
B.
, and
Filsinger
,
D.
,
2015
, “
Analysis of Thrust Bearing Impact on Friction Losses in Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
82507
.
19.
San Andrés
,
L.
,
Barbarie
,
V.
, and
Gjika
,
K.
,
2012
, “
On the Effect of Thermal Energy Transport to the Performance of (Semi)Floating Ring Bearing Systems for Automotive Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102507
.
20.
Zellbeck
,
H.
,
Kleinen
,
M.
, and
Werner
,
R.
,
2013
, “
New Approach for Centrifugal Compressor Calculations
,”
MTZ Worldwide
,
74
(10), pp. 10–17.
21.
CD-Adapco
,
2014
, “
STARCCM+ V9.02 User Guide
,” CD-Adapco, Melville, NY.
22.
Bohn
,
D.
,
Moritz
,
N.
, and
Wolff
,
M.
,
2003
, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger—Part II: Experimental Results
,”
ASME
Paper No. GT2003-38449.
23.
Sirakov
,
B.
, and
Casey
,
M.
,
2011
, “
Evaluation of Heat Transfer Effects on Turbocharger Performance
,”
ASME
Paper No. GT2011-45887.
24.
Gong
,
Y.
,
Sirakov
,
B. T.
,
Epstein
,
A. H.
, and
Tan
,
C. S.
,
2004
, “
Aerothermodynamics of Micro-Turbomachinery
,”
ASME
Paper No. GT2004-53877.
25.
Van den Braembussche
,
R. A.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
,
2004
, “
Heat and Power Balance in Micro Gasturbine Rotors
,”
POWERMEMS
, Kyoto, Japan, Nov. 28–30, pp.
84
87
.
26.
Japikse
,
D.
, and
Baines
,
N. C.
,
1997
,
Introduction to Turbomachinery
,
Concepts ETI
, Norwich, VT.
27.
Lüddecke
,
B.
,
Filsinger
,
D.
,
Ehrhard
,
J.
,
Steinacher
,
B.
,
Seene
,
C.
, and
Bargende
,
M.
,
2013
, “
Contactless Shaft Torque Detection for Wide Range Performance Measurement of Exhaust Gas Turbocharger Turbines
,”
ASME J. Turbomach.
,
136
(
6
), p.
061022
.
28.
Rautenberg
,
M.
,
Malobabic
,
M.
, and
Mobarak
,
A.
,
1984
, “
Influence of Heat Transfer Between Turbine and Compressor on the Performance of Small Turbochargers
,”
1983 Tokyo International Gas Turbine Congress
, Vol.
2
, pp.
567
574
.
You do not currently have access to this content.