The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics, and (iii) particle-adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors for performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a computational fluid dynamic (CFD) and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of blade and the charge level of electrostatic filters seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.

References

1.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanism in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
2.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
3.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
4.
Diakunchak
,
I. S.
,
1991
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.
5.
Zuniga
,
M. O. V.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.
6.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012604
.
7.
Brake
,
C.
,
2007
, “
Identifying Areas Prone to Dusty Winds for Gas Turbine Inlet Specification
,”
ASME
Paper No. GT2007-27820.
8.
,
S.
,
Zhang
,
R.
,
Yao
,
Z.
,
Yi
,
F.
,
Ren
,
J.
,
Wu
,
M.
,
Feng
,
M.
, and
Wang
,
Q.
,
2012
, “
Size Distribution of Chemical Elements and Their Source Apportionment in Ambient Coarse, Fine, and Ultrafine Particles in Shanghai Urban Summer Atmosphere
,”
J. Environ. Sci.
,
24
(
5
), pp.
882
890
.
9.
Schroth
,
T.
, and
Cagna
,
M.
,
2008
, “
Economical Benefits of Highly Efficient Three-Stage Intake Air Filtration for Gas Turbines
,”
ASME
Paper No. GT2008-50280.
10.
Mund
,
M. G.
, and
Murphy
,
T. E.
,
1963
, “
The Gas Turbine-Air-Cleaner Dilemma
,”
ASME
Paper No. 63-AHGT-63.
11.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
, “
Guideline for Gas Turbine Inlet Air Filtration Systems
,” Gas Machinery Research Council, Southwest Research Institute, San Antonio, TX, Release 1.0.
12.
Agengiiturk
,
M.
, and
Sverdrup
,
E. F.
,
1981
, “
A Theory for Fine Particle Deposition in 2-D Boundary Layer Flows and Application to Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
69
76
.
13.
Tarabrin
,
W. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
14.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2005
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME
Paper No. GT2005-68701.
15.
Parker
,
G. J.
, and
Lee
,
P.
,
1972
, “
Studies of the Deposition of Sub-Micron Particles on Turbine Blades
,”
Proc. Inst. Mech. Eng.
,
186
(
1
), pp.
519
526
.
16.
Elrod
,
C. E.
, and
Bettner
,
J. L.
,
1983
, “
Experimental Verification of an Endwall Boundary Layer Prediction Method
,”
Report No. AGRAD CP-351
.
17.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.
18.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative CFD Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.
19.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(
1
), pp.
454
471
.
20.
Lu
,
S.
,
Yi
,
F.
,
Hao
,
X.
,
Yu
,
S.
,
Ren
,
J.
,
Wu
,
M.
,
Jialiang
,
F.
,
Yonemochi
,
S.
, and
Wang
,
Q.
,
2013
, “
Physicochemical Properties and Ability to Generate Free Radicals of Ambient Coarse, Fine, and Ultrafine Particles in the Atmosphere of Xuanwei, China, an Area of High Lung Cancer Incidence
,”
Atmos. Environ.
,
97
(11), pp.
519
528
.
21.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
22.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2014
, “
Performance Evaluation of Non-Uniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
23.
Ahluwalia
,
R. K.
,
Im
,
K. M.
, and
Wenglarz
,
R. A.
,
1989
, “
Flyash Adhesion in Simulated Coal-Fired Gas Turbine Environment
,”
ASME J. Eng. Gas Turbines Power
,
111
(
4
), pp.
672
678
.
You do not currently have access to this content.