A compact and accurate primary reference fuel (PRF) mechanism which consists of 46 species and 144 reactions was developed and validated to consider the fuel chemistry in combustion simulation based on a homogeneous charged compression ignition (HCCI) mechanism. Some significant reactions were updated to ensure its capabilities for predicting combustion characteristics of PRFs. To better predict the laminar flame speed, the relevant C2–C3 carbon reactions were coupled in. This enhanced PRF mechanism was validated by available experimental data references including ignition delay times, laminar flame speed, premixed flame species concentrations in jet stirred reactor (JSR), rapid compression machine (RCM), and shock tube. The predicted data was calculated by chemkin-ii codes. All the comparisons between experimental and calculated data indicated high accuracy of this mechanism to capture combustion characteristics. Also, this mechanism was integrated into kiva4–chemkin. The engine simulation data (including in-cylinder pressure and apparent heat release rate (HRR)) was compared with experimental data in PRF HCCI, partially premixed compression ignition (PCCI), and diesel/gasoline dual-fuel engine combustion data. The comparison results implied that this mechanism could predict PRF and gasoline/diesel combustion in computational fluid dynamic (CFD) engine simulations. The overall results show this PRF mechanism could predict the conventional fuel combustion characteristics in engine simulation.

References

1.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1
), pp.
149
177
.
2.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
3.
Jia
,
M.
, and
Xie
,
M.
,
2006
, “
A Chemical Kinetics Model of Iso-Octane Oxidation for HCCI Engines
,”
Fuel
,
85
(
17
), pp.
2593
2604
.
4.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.
5.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(
4
), pp.
713
738
.
6.
Tanaka
,
S.
,
Ayala
,
F.
, and
Keck
,
J. C.
,
2003
, “
A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine
,”
Combust. Flame
,
133
(
4
), pp.
467
481
.
7.
Tsurushima
,
T.
,
2009
, “
A New Skeletal PRF Kinetic Model for HCCI Combustion
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2835
2841
.
8.
Yoo
,
C. S.
,
Lu
,
T.
,
Chen
,
J. H.
, and
Law
,
C. K.
,
2011
, “
Direct Numerical Simulations of Ignition of a Lean n-Heptane/Air Mixture With Temperature Inhomogeneities at Constant Volume: Parametric Study
,”
Combust. Flame
,
158
(
9
), pp.
1727
1741
.
9.
Wang
,
H.
,
Yao
,
M.
, and
Reitz
,
R. D.
,
2013
, “
Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations
,”
Energy Fuel
,
27
(
12
), pp.
7843
7853
.
10.
Patel
,
A.
,
Kong
,
S.-C.
, and
Reitz
,
R. D.
,
2004
, “
Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations
,”
SAE
Technical Paper No. 2004-01-0558.
11.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.
12.
Niemeyer
,
K. E.
, and
Sung
,
C.-J.
,
2011
, “
On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods
,”
Combust. Flame
,
158
(
8
), pp.
1439
1443
.
13.
Baumgarten
,
C.
,
2006
,
Mixture Formation in Internal Combustion Engines
,
Springer Science & Business Media
,
Berlin
.
14.
Ewald
,
J.
, and
Peters
,
N.
,
2007
, “
On Unsteady Premixed Turbulent Burning Velocity Prediction in Internal Combustion Engines
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3051
3058
.
15.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(
1–6
), pp.
427
449
.
16.
Niemeyer
,
K. E.
,
Sung
,
C.-J.
, and
Raju
,
M. P.
,
2010
, “
Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph With Error Propagation and Sensitivity Analysis
,”
Combust. Flame
,
157
(
9
), pp.
1760
1770
.
17.
Brakora
,
J. L.
,
Ra
,
Y.
,
Reitz
,
R. D.
,
McFarlane
,
J.
, and
Daw
,
C. S.
,
2008
, “
Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations
,”
SAE
Technical Paper No. 2008-01-1378.
18.
Lu
,
T. F.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
19.
Lu
,
T. F.
, and
Law
,
C. K.
,
2006
, “
On the Applicability of Directed Relation Graphs to the Reduction of Reaction Mechanisms
,”
Combust. Flame
,
146
(
3
), pp.
472
483
.
20.
Lu
,
T. F.
, and
Law
,
C. K.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: n-Heptane and Iso-Octane
,”
Combust. Flame
,
144
(
1–2
), pp.
24
36
.
21.
Niemeyer
,
K. E.
, and
Sung
,
C. J.
,
2011
, “
On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods
,”
Combust. Flame
,
158
(
8
), pp.
1439
1443
.
22.
Lu
,
T. F.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane
,”
Combust. Flame
,
154
(
1–2
), pp.
153
163
.
23.
Niemeyer
,
K. E.
,
Sung
,
C. J.
, and
Raju
,
M. P.
,
2010
, “
Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph With Error Propagation and Sensitivity Analysis
,”
Combust. Flame
,
157
(
9
), pp.
1760
1770
.
24.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of SI Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
25.
Ciezki
,
H.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
26.
Huang
,
Y.
,
Sung
,
C.
, and
Eng
,
J.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(
3
), pp.
239
251
.
27.
Kumar
,
K.
,
Freeh
,
J. E.
,
Sung
,
C. J.
, and
Huang
,
Y.
,
2007
, “
Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
J. Propul. Power
,
23
(
2
), pp.
428
436
.
28.
Marchal
,
C.
,
Delfau
,
J.-L.
,
Vovelle
,
C.
,
Moréac
,
G.
,
Mounaïm-Rousselle
,
C.
, and
Mauss
,
F.
,
2009
, “
Modelling of Aromatics and Soot Formation From Large Fuel Molecules
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
753
759
.
29.
Dagaut
,
P.
,
Reuillon
,
M.
, and
Cathonnet
,
M.
,
1993
, “
High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and Iso-Octane
,”
Combust. Sci. Technol.
,
95
(
1–6
), pp.
233
260
.
30.
Dagaut
,
P.
,
Reuillon
,
M.
, and
Cathonnet
,
M.
,
1994
, “
High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 2. Mixtures of n-Heptane and Iso-Octane
,”
Combust. Sci. Technol.
,
103
(
1–6
), pp.
315
336
.
31.
Yang
,
Y.
,
Dec
,
J. E.
,
Dronniou
,
N.
, and
Sjöberg
,
M.
,
2011
, “
Tailoring HCCI Heat-Release Rates With Partial Fuel Stratification: Comparison of Two-Stage and Single-Stage-Ignition Fuels
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3047
3055
.
32.
Yang
,
Y.
,
Dec
,
J. E.
,
Dronniou
,
N.
,
Sjöberg
,
M.
, and
Cannella
,
W.
,
2011
, “
Tailoring HCCI Heat-Release Rates With Partial Fuel Stratification: Comparison of Two-Stage and Single-Stage-Ignition Fuels
,”
Proc. Combust. Inst.
,
33
, pp.
3047
3055
.
33.
Sahoo
,
D.
,
Petersen
,
B.
, and
Miles
,
P. C.
,
2011
, “
Measurement of Equivalence Ratio in a Light-Duty Low Temperature Combustion Diesel Engine by Planar Laser Induced Fluorescence of a Fuel Tracer
,”
SAE
Technical Paper No. 2011-24-0064.
You do not currently have access to this content.