In this study, dynamic ϕ–T map analysis was applied to a reactivity controlled compression ignition (RCCI) engine fueled with natural gas (NG) and diesel. The combustion process of the engine was simulated by coupled kiva4-chemkin with a diesel oil surrogate (DOS) chemical mechanism. The ϕ–T maps were constructed by the mole fractions of soot and NO obtained from senkin and ϕ–T conditions from engine simulations. Five parameters, namely, NG fraction, first start of injection (SOI) timing, second SOI timing, second injection duration, and exhaust gas recirculation (EGR) rate, were varied in certain ranges individually, and the ϕ–T maps were compared and analyzed under various conditions. The results revealed how the five parameters would shift the ϕ–T conditions and influence the soot–NO contour. Among the factors, EGR rate could limit the highest temperature due to its dilute effect, hence maintaining RCCI combustion within low-temperature combustion (LTC) region. The second significant parameter is the premixed NG fraction. It could set the lowest temperature; moreover, the tendency of soot formation can be mitigated due to the lessened fuel impingement and the absence of C–C bond. Finally, the region of RCCI combustion was added to the commonly known ϕ–T map diagram.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York.
2.
Genta
,
G.
,
Morello
,
L.
,
Cavallino
,
F.
, and
Filtri
,
L.
,
2014
, “
Energy and Environmental Issues
,”
The Motor Car: Past, Present and Future
,
Springer
,
Dordrecht
.
3.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
4.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust.
,
37
(
6
), pp.
741
783
.
5.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending
,”
SAE Int. J. Engine
,
2
(
2
), pp.
24
39
.
6.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust.
,
46
, pp.
12
71
.
7.
Dec
,
J. E.
,
2009
, “
Advanced Compression-Ignition Engines—Understanding the In-Cylinder Processes
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2727
2742
.
8.
Splitter
,
D.
,
Kokjohn
,
S.
,
Rein
,
K.
,
Hanson
,
R.
,
Sanders
,
S.
, and
Reitz
,
R.
,
2010
, “
An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion
,”
SAE Int. J. Engine
,
3
(
1
), pp.
142
162
.
9.
Akihama
,
K.
,
Takatori
,
Y.
,
Inagaki
,
K.
,
Sasaki
,
S.
, and
Dean
,
A. M.
,
2001
, “
Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature
,”
SAE
Technical Paper No. 2001-01-0655.
10.
Kim
,
S. K.
,
Wakisaka
,
T.
, and
Aoyagi
,
Y.
,
2007
, “
A Numerical Study of the Effects of Boost Pressure and Exhaust Gas Recirculation Ratio on the Combustion Process and Exhaust Emissions in a Diesel Engine
,”
Int. J. Engine Res.
,
8
(
2
), pp.
147
162
.
11.
Bergman
,
M.
, and
Golovitchev
,
V.
,
2007
, “
Application of Transient Temperature vs. Equivalence Ratio Emission Maps to Engine Simulations
,”
SAE
Technical Paper No. 2007-01-1086.
12.
Golovitchev
,
V. I.
, and
Yang
,
J.
,
2009
, “
Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications
,”
Biotechnol. Adv.
,
27
(
5
), pp.
641
655
.
13.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Redón Lurbe
,
P.
, and
López Sánchez
,
J. J.
,
2012
, “
Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion
,”
Int. J. Chem. Eng.
,
2012
, p.
898742
.
14.
Desantes
,
J. M.
,
Benajes
,
J.
,
García
,
A.
, and
Monsalve-Serrano
,
J.
,
2014
, “
The Role of the In-Cylinder Gas Temperature and Oxygen Concentration Over Low Load Reactivity Controlled Compression Ignition Combustion Efficiency
,”
Energy
,
78
, pp.
854
868
.
15.
Li
,
Y.
,
Jia
,
M.
,
Liu
,
Y.
, and
Xie
,
M.
,
2013
, “
Numerical Study on the Combustion and Emission Characteristics of a Methanol/Diesel Reactivity Controlled Compression Ignition (RCCI) Engine
,”
Appl. Energy
,
106
, pp.
184
197
.
16.
Dempsey
,
A. B.
,
Das Adhikary
,
B.
,
Viswanathan
,
S.
, and
Reitz
,
R. D.
,
2012
, “
Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082806
.
17.
Wu
,
Y.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Exhaust Gas Recirculation and Boost Pressure on Reactivity Controlled Compression Ignition Engine at High Load Operating Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032210
.
18.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engine
,
3
(
1
), pp.
700
716
.
19.
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2010
, “
Characterization of Dual-Fuel PCCI Combustion in a Light-Duty Engine
,”
20th International Multidimensional Engine Modeling User's Group Meeting
,
Detroit, MI
, April 12.
20.
Li
,
J.
,
Yang
,
W. M.
,
Goh
,
T. N.
,
An
,
H.
, and
Maghbouli
,
A.
,
2014
, “
Study on RCCI (Reactivity Controlled Compression Ignition) Engine by Means of Statistical Experimental Design
,”
Energy
,
78
, pp.
777
787
.
21.
Torres
,
D. J.
, and
Trujillo
,
M. F.
,
2006
, “
KIVA-4: An Unstructured ALE Code for Compressible Gas Flow With Sprays
,”
J. Comput. Phys.
,
219
(
2
), pp.
943
975
.
22.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics
,” Sandia National Laboratories, Livermore, CA, Report No. SAND-89-8009.
23.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
24.
Orszag
,
S. A.
,
Yakhot
,
V.
,
Flannery
,
W. S.
,
Boysan
,
F.
,
Choudhury
,
D.
,
Maruzewski
,
J.
, and
Patel
,
B.
,
1993
, “
Renormalization Group Modeling and Turbulence Simulations
,”
Near-Wall Turbulent Flows
,
Elsevier
,
Amsterdam
, pp.
1031
1046
.
25.
Lutz
,
A. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1988
, “
SENKIN: A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis
,” Sandia National Laboratories, Livermore, CA, Report No. SAND87-8248.
26.
Golovitchev
,
V.
,
Nordin
,
N.
,
Jarnicki
,
R.
, and
Chomiak
,
J.
,
2000
, “
3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model
,”
SAE
Technical Paper No. 2000-01-1891.
27.
Maghbouli
,
A.
,
Saray
,
R. K.
,
Shafee
,
S.
, and
Ghafouri
,
J.
,
2013
, “
Numerical Study of Combustion and Emission Characteristics of Dual-Fuel Engines Using 3D-CFD Models Coupled With Chemical Kinetics
,”
Fuel
,
106
, pp.
98
105
.
28.
Lim
,
J. H.
, and
Reitz
,
R. D.
,
2014
, “
High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101514
.
29.
Wu
,
Y.
,
Hanson
,
R.
, and
Reitz
,
R. D.
,
2014
, “
Investigation of Combustion Phasing Control Strategy During Reactivity Controlled Compression Ignition (RCCI) Multicylinder Engine Load Transitions
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091511
.
You do not currently have access to this content.