In this paper, a low-order model for predicting performance of radial turbocharger turbines is presented. The model combines an unsteady quasi-three-dimensional (Q3D) computational fluid dynamics (CFD) method with multiple one-dimensional (1D) meanline impeller solvers. The new model preserves the critical volute geometry features, which is crucial for the accurate prediction of the wave dynamics and retains effects of the rotor inlet circumferential nonuniformity. It also still maintains the desirable properties of being easy to set-up and fast to run. The model has been validated against a experimentally validated full 3D unsteady Reynolds-averaged Navier–Stokes (URANS) solver. The loss model in the meanline model is calibrated by the full 3D RANS solver under the steady flow states. The unsteady turbine performance under different inlet pulsating flow conditions predicted by the model was compared with the results of the full 3D URANS solver. Good agreement between the two was obtained with a speed-up ratio of about 4 orders of magnitude (∼104) for the low-order model. The low-order model was then used to investigate the effect of different pulse wave amplitudes and frequencies on the turbine cycle averaged performance. For the cases tested, it was found that compared with quasi-steady performance, the unsteady effect of the pulsating flow has a relatively small impact on the cycle-averaged turbine power output and the cycle-averaged mass flow capacity, while it has a large influence on the cycle-averaged ideal power output and cycle-averaged efficiency. This is related to the wave dynamics inside the volute, and the detailed mechanisms responsible are discussed in this paper.

References

1.
Martinez-Botas
,
R.
,
Pesiridis
,
A.
, and
Yang
,
M.
,
2011
, “
Overview of Boosting Options for Future Downsized Engines
,”
Sci. China (Technol. Sci.)
,
54
(
2
), pp.
318
331
.
2.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
The Macmillan Press Ltd.
, London.
3.
Baines
,
N.
,
Hajilouy-Benisi
,
A.
, and
Yeo
,
J.
,
1994
, “
The Pulse Flow Performance and Modelling of Radial Inflow Turbines
,”
Proc. Inst. Mech. Eng.
,
C484/006
, pp.
209
219
.
4.
Payri
,
F.
,
Benajes
,
J.
, and
Reyes
,
M.
,
1996
, “
Modelling of Supercharger Turbines in Internal-Combustion Engines
,”
Int. J. Mech. Sci.
,
38
(
8–9
), pp.
853
869
.
5.
Chen
,
H.
, and
Winterbone
,
D.
,
1990
, “
A Method to Predict Performance of Vaneless Radial Turbines Under Steady and Unsteady Flow Conditions
,”
Proc. Inst. Mech. Eng.
,
C405/008
, pp.
13
22
.
6.
Chen
,
H.
,
Hakeem
,
I.
, and
Martinez-Botas
,
R. F.
,
1996
, “
Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions
,”
Proc. Inst. Mech. Eng., Part A
,
210
(
51
), pp.
397
408
.
7.
Abidat
,
M.
,
Hachemi
,
M.
,
Hamidou
,
M.
, and
Baines
,
N.
,
1998
, “
Prediction of the Steady and Non-Steady Flow Performance of a Highly Loaded Mixed Flow Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
212
(
3
), pp.
173
184
.
8.
Hu
,
X.
, and
Lawless
,
P. B.
,
2001
, “
A Model for Radial Flow Turbine Performance in Highly Unsteady Flows
,”
ASME
Paper No. 2001-GT-0312.
9.
Costall
,
A.
,
Szymko
,
S.
,
Martinez-Botas
,
R. F.
,
Filsinger
,
D.
, and
Ninkovic
,
D.
,
2006
, “
Assessment of Unsteady Behavior in Turbocharger Turbines
,”
ASME
Paper No. GT2006-90348.
10.
Costall
,
A.
,
McDavid
,
R.
,
Martinez-Botas
,
R. F.
, and
Baines
,
N.
,
2009
, “
Pulse Performance Modelling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission
,”
ASME
Paper No. GT2009-59406.
11.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2012
, “
Unsteady Performance Prediction of a Single Entry Mixed Flow Turbine Using 1-D Gas Dynamic Code Extended With Meanline Model
,”
ASME
Paper No. GT2012-69176.
12.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Costall
,
A. W.
,
Salim
,
W.
,
Romagnoli
,
A.
, and
Martinez-Botas
,
R. F.
,
2013
, “
Assessment of Cycle Averaged Turbocharger Maps Through One Dimensional and Mean-Line Coupled Codes
,”
ASME
Paper No. GT2013-95906.
13.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Martinez-Botas
,
R. F.
, and
Costall
,
A. W.
,
2012
, “
Engine Turbocharger Performance Prediction: One-Dimensional Modeling of a Twin Entry Turbine
,”
Energy Convers. Manage.
,
57
, pp.
68
78
.
14.
Benson
,
R.
, and
Scrimshaw
,
K.
,
1965
, “
An Experimental Investigation of Non-Steady Flow in a Radial Gas Turbine
,”
Proc. Inst. Mech. Eng.
,
180
, pp.
74
85
.
15.
Wallace
,
F.
, and
Blair
,
G.
,
1965
, “
The Pulsating Flow Performance of Inward Radial Flow Turbines
,”
ASME
Paper No. 65-GTP-21.
16.
Kosuge
,
H.
,
Yamanaka
,
N.
,
Ariga
,
I.
, and
Watanabe
,
I.
,
1976
, “
Performance of Radial Flow Turbines Under Pulsating Flow Conditions
,”
J. Eng. Power
,
98
(
1
), pp.
53
59
.
17.
Capobianco
,
M.
,
Gambarotta
,
A.
, and
Cipolla
,
G.
,
1989
, “
Influence of the Pulsating Flow Operation on the Turbine Characteristics of a Small Internal Combustion Engine Turbocharger
,”
Proc. Inst. Mech. Eng.
,
C372/019
, pp.
63
69
.
18.
Capobianco
,
M.
, and
Gambarotta
,
A.
,
1990
, “
Unsteady Flow Performance of Turbocharger Radial Turbines
,”
Proc. Inst. Mech. Eng.
,
C405/017
, pp.
123
132
.
19.
Szymko
,
S.
,
Martinez-Botas
,
R. F.
, and
Pullen
,
K. R.
,
2005
, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
ASME
Paper No. GT2005-68878.
20.
Rajoo
,
S.
, and
Martinez-Botas
,
R. F.
,
2010
, “
Unsteady Effect in a Nozzled Turbocharger Turbine
,”
ASME J. Turbomach.
,
132
, pp.
1
9
.
21.
Copeland
,
C.
,
Newton
,
P.
,
Martinez-Botas
,
R. F.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine
,”
Proc. Inst. Mech. Eng.
,
C1340/068
, pp.
389
404
.
22.
Pesiridis
,
A.
,
Lioutas
,
S.
, and
Martinez-Botas
,
R. F.
,
2012
, “
Integration of Unsteady Effects in the Turbocharger Design Process
,”
ASME
Paper No. GT2012-69053.
23.
Cao
,
T.
,
Xu
,
L.
,
Yang
,
M.
, and
Martinez-Botas
,
R. F.
,
2014
, “
Radial Turbine Rotor Response to Pulsating Inlet Flows
,”
ASME J. Turbomach.
,
136
(
7
), p.
071003
.
24.
Roe
,
P. L.
,
1982
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
38
, pp.
357
372
.
25.
Blazek
,
J.
,
2001
,
Computational Fluid Dynamics: Principles and Applications
,
Elsevier Science Ltd.
, Oxford, UK.
26.
Jameson
,
A.
,
1991
, “
Time-Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.
27.
Wasserbauer
,
C. A.
, and
Glassman
,
A. J.
,
1975
, “
Fortran Program for Predicting Off-Design Performance of Radial-Inflow Turbines
,” NASA Lewis Research Center, Cleveland, OH, NASA Technical Note, Report No.
NASA
TN D-8063.
28.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachines
,
Longman Scientific & Technical
, Harlow, Essex, UK.
29.
Denton
,
J. D.
,
1992
, “
The Calculations of Three Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
144
, pp.
18
26
.
You do not currently have access to this content.