Sand transport and deposition is investigated in a two-pass internal cooling ribbed geometry at near engine conditions. Large-eddy simulation (LES) calculations are performed for bulk Reynolds number of 25,000 to calculate flow field and heat transfer. Constant wall temperature boundary condition is used to investigate the effect of temperature on particle deposition. Three different wall temperatures of 950 °C, 1000 °C, and 1050 °C are considered. Particle sizes in range 5–25 μm are considered. A new deposition model which accounts for particle composition, temperature, impact velocity and angle and material properties of particle and surface is developed and applied. Calculated impingement and deposition patterns are discussed for different exposed surfaces in the two pass geometry. Other than the leading rib faces, the highest particle impingement and deposition is observed in the bend region and first quarter of the second pass. Significant deposition is observed in the two pass geometry for all three wall temperatures considered. Particle impingement and hence deposition is dominated by larger particles except in the downstream half of the bend region. In total, approximately 38%, 59%, and 67% of the injected particles deposit in the two passes, for the three wall temperatures of 950 °C, 1000 °C, and 1050 °C, respectively. While particle impingement is highest for wall temperature of 950 °C, higher deposition is observed for 1000 °C and 1050 °C cases. Deposition increases significantly with wall temperature. For 1000 °C, roughly 12% of the impacting particles deposit. For 1050 °C, approximately 23% of the particles deposit on impact. For all the three cases, the second pass experiences higher deposition compared to the first pass due to higher turbulence and direct impingement.

References

1.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
2.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of 2 Gas-Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
3.
Tabakoff
,
W
.,
1987
, “
Compressor Erosion and Performance Deterioration
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
297
306
.
4.
Edwards
, V
. R.
, and
Rouse
,
P. L.
,
1994
, “
U.S. Army Rotorcraft Turboshaft Engines Sand & Dust Erosion Considerations
,” AGARD, Erosion, Corrosion and Foreign Object Damage Effects in Gas Turbines, QC, Canada.
5.
Hamed
,
A.
, and
Tabakoff
,
W.
,
1990
, “
Jet Engines Performance Deterioration
,”
3rd International Congress of Fluid Mechanics
, Vol.
2
.
6.
Tabakoff
,
W.
,
Grant
,
G.
, and
Ball
,
R.
,
1974
, “
An Experimental Investigation of Certain Aerodynamic Effects on Erosion
,”
AIAA
Paper No. 74-639.
7.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
8.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Wear
,”
Wear
,
3
(
2
), pp.
87
103
.
9.
Richardson
,
J. H.
,
Sallee
,
G. P.
, and
Smakula
,
F. K.
,
1979
, “
Causes of High Pressure Compressor Deterioration in Service
,”
AIAA/SAE/ASME Joint Propulsion Conference
,
Las Vegas, NV
.
10.
Tabakoff
,
W.
, and
Sugiyama
,
Y.
,
1980
, “
Experimental Methods of Determining Particle Restitution Coefficients
,” Symposium on Polyphase Flow and Transport, ASME, Century 2-Engineering Technology Conferences.
11.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2004
, “
Experimental Investigation of Axial Fan Erosion and Performance Degradation
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
A6
), pp.
437
450
.
12.
Schmucker
,
J.
, and
Schaffler
,
A.
,
1994
, “
Performance Deterioration of Axial Compressors Due to Blade Defects
,”
Propulsion and Energetic Panel, Symposium
,
Rotterdam, The Netherlands
, Apr. 25–28.
13.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.
14.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME
Paper No. GT2006-90067.
15.
Land
,
C. C.
,
Joe
,
C.
, and
Thole
,
K. A.
,
2010
, “
Considerations of a Double-Wall Cooling Design to Reduce Sand Blockage
,”
ASME J. Turbomach.
,
132
(
3
), p.
031011
.
16.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
ASME
Paper No. GT-2002-30600.
17.
Ai
,
W. G.
, and
Fletcher
,
T. H.
,
2012
, “
Computational Analysis of Conjugate Heat Transfer and Particulate Deposition on a High Pressure Turbine Vane
,”
ASME J. Turbomach.
,
134
(
4
), p.
041020
.
18.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.
19.
Brun
,
K.
,
Nored
,
M.
, and
Kurz
,
R.
,
2012
, “
Particle Transport Analysis of Sand Ingestion in Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012402
.
20.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
An Experimental Investigation Into Aspects of Erosion in Rocket Motor Tail Nozzles
,”
Wear
,
11
(
2
), pp.
123
143
.
21.
Zaita
,
A. V.
,
Buley
,
G.
, and
Karlsons
,
G.
,
1998
, “
Performance Deterioration Modeling in Aircraft Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
344
349
.
22.
Scala
,
S. M.
,
Konrad
,
M.
, and
Mason
,
R. B.
,
2003
, “
Predicting the Performance of a Gas Turbine Undergoing Compressor Blade Erosion
,”
AIAA
Paper No. 2003-5259.
23.
Hathaway
,
M. D.
,
Chen
,
J.
, and
Webster
,
R.
,
2003
, “
Time Accurate Unsteady Simulation of the Stall Inception Process in the Compression System of a U.S. Army Helicopter Gas Turbine Engine
,”
DoD HPCMP User's Group Conference (UGC)
,
Bellevue, WA
, June 9–13.
24.
Tabakoff
,
W.
, and
Hamed
,
A.
,
1984
, “
Installed Engine Performance in Dust-Laden Atmosphere
,”
AIAA
Paper No. 84-2488.
25.
Tabakoff
,
W.
,
Lakshminarasimha
,
A. N.
, and
Pasin
,
M.
,
1989
, “
Simulation of Compressor Performance Deterioration Due to Erosion
,”
34th International Gas Turbine and Aeroengine Congress and Exhibition
,
Toronto, Canada
, June 4–8.
26.
Tabakoff
,
W.
,
1986
, “
Compressor Erosion and Performance Deterioration
,”
AIAA/ASME 4th Joint Fluid Mechanics, Plasma Dynamics and Laser Conference
,
Atlanta, GA
, May 12–14.
27.
Balan
,
C.
, and
Tabakoff
,
W.
,
1983
, “
A Method of Predicting the Performance Deterioration of a Compressor Cascade Due to Sand Erosion
,”
AIAA
Paper No. 83-0178.
28.
Schneider
,
O.
,
Dohmen
,
H. J.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2003
, “
Investigations of Dust Separation in the Internal Cooling Air System of Gas Turbines
,”
ASME
Paper No. GT2003-38293.
29.
Singh
,
S.
, and
Tafti
,
D.
,
2013
, “
Predicting the Coefficient of Restitution for Particle Wall Collisions in Gas Turbine Components
,”
ASME
Paper No. GT2013-95623.
30.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.
31.
Singh
,
S.
, and
Tafti
,
D.
,
2012
, “
Detailed Heat Transfer in a Two Pass Internal Cooling Duct With Rib Turbulators Using Wall Modeled Large Eddy Simulations (WMLES)
,”
ASME
Paper No. HT2012-58260.
32.
Singh
,
S.
,
Tafti
,
D. K.
,
Reagle
,
C.
,
Delimont
,
J.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2014
, “
Sand Transport in a Two Pass Internal Cooling Duct With Rib Turbulators
,”
Int. J. Heat Fluid Flow
,
46
, pp.
158
167
.
33.
Barker
,
B.
,
Casaday
,
B.
,
Shankara
,
P.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part II: Computational Modeling
,”
ASME J. Turbomach.
,
135
(1), p.
011015
.
34.
Casaday
,
B. P.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2013
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane Endwalls
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032001
.
35.
Tafti
,
D. K.
,
2001
, “
GenIDLEST-A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
ASME Fluids Engineering Division
, Vol.
256
.
36.
Tafti
,
D. K.
,
2005
, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
,
26
(
1
), pp.
92
104
.
37.
Shah
,
A.
,
2005
, “
Development and Application of Dispersed Two Phase Capability in a General Multi-Block Navier–Stokes Solver
,” M.S. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
38.
Shah
,
A.
, and
Tafti
,
D. K.
,
2007
, “
Transport of Particulates in an Internal Cooling Ribbed Duct
,”
ASME J. Turbomach.
,
129
(
4
), pp.
816
825
.
39.
Elghobashi
,
S.
, and
Truesdell
,
G. C.
,
1992
, “
Direct Simulation of Particle Dispersion in a Decaying Isotropic Turbulence
,”
J. Fluid Mech.
,
242
, pp.
655
700
.
40.
Wang
,
Q.
,
Squires
,
K. D.
,
Chen
,
M.
, and
McLaughlin
,
J. B.
,
1997
, “
On the Role of the Lift Force in Turbulence Simulations of Particle Deposition
,”
Int. J. Multiphase Flow
,
23
(
4
), pp.
749
763
.
41.
Wang
,
Q.
, and
Squires
,
K. D.
,
1996
, “
Large Eddy Simulation of Particle Deposition in a Vertical Turbulent Channel Flow
,”
Int. J. Multiphase Flow
,
22
(
4
), pp.
667
683
.
42.
Armenio
,
V.
,
Piomelli
,
U.
, and
Fiorotto
,
V.
,
1999
, “
Effect of the Subgrid Scales on Particle Motion
,”
Phys. Fluids
,
11
(
10
), pp.
3030
3042
.
43.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
, p.
434
.
44.
Senior
,
C. L.
, and
Srinivasachar
,
S.
,
1995
, “
Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking
,”
Energy Fuels
,
9
(
2
), pp.
277
283
.
45.
Yin
,
C.
,
Luo
,
Z.
,
Ni
,
M.
, and
Cen
,
K.
,
1998
, “
Predicting Coal Ash Fusion Temperature With a Back-Propagation Neural Network Model
,”
Fuel
,
77
(
15
), pp.
1777
1782
.
You do not currently have access to this content.