The aerodynamic damping calculations for turbomachinery blade aeromechanics applications are typically carried out in an isolated blade row. The aerodynamic damping of vibrating blades, however, can be significantly influenced by the presence of neighboring blade rows. A highly efficient frequency-domain method is used to investigate the multirow effects on the blade row aerodynamic damping of a compressor and turbine. Depending on the blade profile orientations, the flow reflection effects from adjacent blade rows can significantly alter both unsteady pressure amplitudes and phase angles. Therefore, the blade aerodamping might increase or decrease depending on the stabilizing or destabilizing effects of the unsteady pressure changes. In the case of the compressor, the downstream stator significantly changes the unsteady pressure distribution on the rotor thus, affects the rotor aerodamping. In the turbine case, the upstream stator has a major effect on the aerodamping, while the downstream stator does not significantly change the rotor aerodamping.

References

1.
Marshall
,
J. G.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
.
2.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Imregun
,
M.
, and
Simpson
,
G.
,
2007
, “
Multibladerow Forced Response Modeling in Axial-Flow Core Compressors
,”
ASME J. Turbomach.
,
129
(
2
), pp.
412
421
.
3.
He
,
L.
, and
Ning
,
W.
,
1998
, “
An Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
4.
Hall
,
K.
, and
Lorence
,
C.
,
1993
, “
Calculation of Three-Dimensional Unsteady Flows in Turbomachinery Using the Linearized Harmonic Euler Equations
,”
ASME J. Turbomach.
,
115
(
4
), pp.
800
809
.
5.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
6.
Silkowski
,
P. D.
, and
Hall
,
K. C.
,
1998
, “
A Coupled Mode Analysis of Unsteady Multistage Flows in Turbomachinery
,”
ASME J. Turbomach.
,
120
(
3
), pp.
410
421
.
7.
He
,
L.
,
2008
, “
Harmonic Solution of Unsteady Flow Around Blades With Separation
,”
AIAA J.
,
46
(
6
), pp.
1299
1307
.
8.
Rahmati
,
M. T.
,
He
,
L.
, and
Li
,
Y. S.
,
2012
, “
Multi-Row Interference Effects on Blade Aeromechanics in Compressor and Turbine Stages
,”
13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(ISUAAAT13), Tokyo, Sept. 10–14.
9.
Li
,
H.
, and
He
,
L.
,
2005
, “
Blade Aerodynamic Damping Variation With Rotor-Stator Gap: A Computational Study Using Single-Passage Approach
,”
ASME J. Turbomach.
,
127
(
3
), pp.
573
579
.
10.
Rahmati
,
M. T.
,
He
,
L.
, and
Wells
,
R. G.
,
2010
, “
Interface Treatment for Harmonic Solution in Multi-Row Aeromechanical Analysis
,”
ASME
Paper No. GT2010-23376.
11.
Rahmati
,
M. T.
,
He
,
L.
,
Wang
,
D. X.
,
Li
,
Y. S.
,
Wells
,
R. G.
, and
Krishnababu
,
S. K.
,
2014
, “
Non-Linear Time and Frequency Domain Method for Multi-Row Aeromechanical Analysis
,”
ASME J. Turbomach.
,
136
(
4
), p.
041010
.
12.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1993
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time-Stepping Schemes
,”
AIAA
Paper No. 93-3559.
13.
He
,
L.
,
2000
, “
Three-Dimensional Unsteady Navier–Stokes Analysis of Stator-Rotor Interaction in Axial-Flow Turbines
,”
J. Power Energy
,
214
(1), pp.
13
22
.
14.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
AIAA J. Propul. Power
,
6
(
5
), pp.
621
627
.
15.
Dunker
,
R.
,
Rechter
,
H.
,
Starken
,
H.
, and
Weyer
,
H.
,
1984
, “
Redesign and Performance Analysis of a Transonic Axial Compressor Stator and Equivalent Plane Cascades With Subsonic Controlled Diffusion Blades
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
279
287
.
You do not currently have access to this content.