Optimization of blade stacking in low-pressure (LP) steam turbine development constitutes one of the most delicate and time-consuming parts of the design process. This is the second part of two papers focusing on stacking strategies applied to the last stage guide vane and represents an attempt to discern the aerodynamic targets that can be achieved by each of the well-known and most often used basic stacking schemes. The effects of lean and twist have been investigated through an iterative process, involving comprehensive 3D computational fluid dynamics (CFD) modeling of the last two stages of a standard LP, where the basic lean and twist stacking schemes were applied on the last stage guide vanes while keeping the throat area (TA) unchanged. It has been found that it is possible to achieve the same target value and pattern of stage reaction by applying either tangential lean or an equivalent value of twist. Moreover, the significance of axial sweep on hub reaction has been found to become pronounced when the blade sweep is carried out at constant TA. The importance of hub-profiling has also been demonstrated and assessed. Detailed analysis of the flow fields has provided an overall picture, revealing the differences in the main flow parameters as produced by each of the alternative basic stacking schemes.

References

1.
Havakechian
,
S.
, and
Denton
,
J.
,
2015
, “
3D Blade Stacking Strategy and Understanding of Flow Physics in Low Pressure Steam Turbines, Part I—3D Stacking Mechanisms
,”
ASME
Paper No. GT2015-42591.
2.
Weiss
,
A.
,
1998
, “
Aerodynamic Design of Advanced LP Steam Turbines
,”
ABB Review
,
5
, pp.
4
11
.
3.
Heinrich
,
S.
,
Truckenmüller
,
F.
,
Borthwick
,
D.
, and
Denton
,
J. D.
,
2005
, “
Aerodynamic Concept for Very Large Steam Turbine Last Stages
,”
ASME
Paper No. GT2005-68746.
4.
Denton
,
J. D.
,
1979
, “
Aerodynamic Factors in the Design of the Final Stage of Large High Speed Steam Turbines
,” IMechI, Report No. C193/79.
5.
Walker
,
P. J.
,
1987
, “
Blade Lean in Axial Turbines: Model Turbine Measurements and Simulation by Novel Numerical Methods
,” Ph.D. thesis, Cambridge University, Cambridge, UK.
6.
Haller
,
B.
, and
Hesketh
,
J. A.
,
1993
, “
Large Steam Turbine Retrofitting to Improve Performance
,”
POWER-GEN Europe’93 Conference
, Paris, May 25–27, pp.
175
196
.
You do not currently have access to this content.