This work deals with the influence of roughness on high-pressure steam turbine stages. It is divided in three parts. In the first one, an experimental campaign on a linear cascade is described, in which blade losses are measured for different values of surface roughness and in a range of Reynolds numbers of practical interest. The second part is devoted to the basic aspects of the numerical approach and consists of a detailed discussion of the roughness models used for computations. The fidelity of such models is then tested against measurements, thus allowing their fine-tuning and proving their reliability. Finally, comprehensive computational fluid dynamics (CFD) analysis is carried out on a high-pressure stage, in order to investigate the influence of roughness on the losses over the entire stage operating envelope. Unsteady effects that may affect the influence of the roughness, such as the upcoming wakes on the rotor blade, are taken into account, and the impact of transition-related aspects on the losses is discussed.

References

1.
Nikuradse
,
J.
,
1933
, “
Laws for Flows in Rough Pipes
,” VDI-Forchungsheft 361, Series B, Vol. 4 (English translation NACA TM 1292, 1950).
2.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ing. Arch.
7
(
1
), pp.
1
34
.10.1007/BF02084166
3.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(2), p.
021004
.10.1115/1.3066315
4.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluid Eng.
,
132
(4), p.
041203
.10.1115/1.4001492
5.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill, Inc.
,
New York
.
6.
Speidel
,
L.
,
1962
, “
Determination of the Necessary Surface Quality and Possible Losses Due to Roughness in Steam Turbines
,”
Elektrizitätswirtschaft
,
61
(
21
), pp.
799
804
.
7.
Hummel
,
F.
,
Lötzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2005
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
,
127
(3), pp.
453
461
.10.1115/1.1860377
8.
Dirling
,
R. B.
,
1973
, “
A Method for Computing Roughwall Heat Transfer Rates on Re-Entry Nosetips
,”
AIAA
Paper No. 73-76310.2514/6.1973-763.
9.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
10.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluid Eng.
,
124
(3), pp.
671
677
.10.1115/1.1486222
11.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.10.2514/2.491
12.
Zhang
,
Q.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Trindade
,
R.
, and
Sreekanth
,
S.
,
2006
, “
Influence of Surface Roughness on the Aerodynamic Losses of a Turbine Vane
,”
ASME J. Turbomach.
,
128
(3), pp.
568
578
10.1115/1.2175163.
13.
Im
,
J. H.
,
Shin
,
J. H.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2013
, “
Effect of Leading Edge Roughness and Reynolds Number on Compressor Profile Loss
,”
ASME
Paper No. GT2013-95487. 10.1115/GT2013-95487
14.
Vázquez
,
R.
, and
Torre
,
D.
,
2013
, “
The Effect of Surface Roughness on Efficiency of Low Pressure Turbines
,”
ASME
Paper No. GT2013-94200.10.1115/GT2013-94200
15.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(6), pp.
419
454
.10.1016/j.paerosci.2005.08.001
16.
Boyle
,
R. J.
,
1994
, “
Prediction of Surface Roughness and Incidence Effects on Turbine Performance
,”
ASME J. Turbomach.
,
116
(4), pp.
745
751
.10.1115/1.2929468
17.
Mesbah
,
M.
,
Arts
,
T.
,
Simon
,
J. F.
, and
Geuzaine
,
P.
,
2009
, “
Numerical and Experimental Analysis of Surface Roughness Effects for Compressor Blades
,”
AIAA
Paper No. ISABE-2009-1151.
18.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
,
2003
, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,”
ASME
Paper No. GT2003-38580. 10.1115/GT2003-38580
19.
Cebeci
,
T.
, and
Chang
,
K.
,
1978
, “
Calculation of Incompressible Rough-Wall Boundary Layer Flows
,”
AIAA J.
,
16
(
7
), pp.
730
735
.10.2514/3.7571
20.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(4), pp.
509
537
.10.1115/1.2929110
21.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
,
1999
, “
The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
,
121
(
2
), pp.
200
208
.10.1115/1.2841302
22.
D'Ippolito
,
G.
,
Dossena
,
V.
, and
Mora
,
A.
,
2011
, “
The Influence of Blade Lean on Straight and Annular Turbine Cascade Flow Field
,”
ASME J. Turbomach.
,
133
(1), p.
011013
.10.1115/1.4000536
23.
Speidel
,
L.
,
1954
, “
Einfluβ der Oberflächenrauhigkeit auf die Strömungsverluste in ebenen Schaufelgittern
,”
Forschg, Ing.-Wes.
20
(5), pp.
129
140
.10.1007/BF02558373
24.
Feindt
,
E. G.
,
1956
,
Untersuchungen über die Abhängigkeit des Umshclages laminar-turbulent von der Oberflächenrauhigkeit und der Druckverteilung
,
Springer-Verlag
,
Berlin
.
25.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier–Stokes Solution of Transonic Cascade Flow Using Non-Periodic c-Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.10.2514/3.23493
26.
Arnone
,
A.
, and
Pacciani
,
R.
,
1996
, “
Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method
,”
ASME J. Turbomach.
,
118
(
4
), pp.
679
689
.10.1115/1.2840923
27.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.10.2514/6.1991-1596
28.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
,
La Cañada, CA
.
29.
Mayle
,
R. E.
, and
Schultz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
(
3
), pp.
405
411
.10.1115/1.2841138
30.
Pacciani
,
R.
,
Marconcini
,
M.
,
Fadai-Ghotbi
,
A.
,
Lardeau
,
S.
, and
Leschziner
,
M. A.
,
2011
, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model
,”
ASME J. Turbomach.
,
133
(
3
), p.
031016
.10.1115/1.4001237
31.
Pacciani
,
R.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2011
, “
An Assessment of the Laminar Kinetic Energy Concept for the Prediction of High-Lift, Low-Reynolds Number Cascade Flows
,”
Proc. Inst. Mech. Eng. A
,
225
(
7
), pp.
995
1003
.10.1177/0957650911412444
32.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k-ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.10.2514/1.36541
33.
Hellsten
,
A.
, and
Laine
,
S.
,
1997
. “
Extension of the k-ω-SST Turbulence Model for Flows Over Rough Surfaces
,”
AIAA
Paper No. 97-3577.10.2514/6.1997-3577
34.
Patel
,
V. C.
,
1998
, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD
,”
ASME J. Fluid Eng.
,
120
(
3
), pp.
434
444
.10.1115/1.2820682
35.
Knopp
,
T.
,
Eisfeld
,
B.
, and
Calvo
,
J. B.
,
2009
. “
A New Extension for k-ω Turbulence Models to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
,
30
(1), pp.
54
65
.10.1016/j.ijheatfluidflow.2008.09.009
36.
Mills
,
A.
, and
Hang
,
X.
,
1983
, “
On the Skin Friction Coefficient for a Fully Rough Flat Plate
,”
ASME J. Fluid Eng.
,
105
(
3
), pp.
364
365
.10.1115/1.3241008
37.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(1), pp.
407
424
.10.1243/PIME_PROC_1970_185_048_02
38.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial Inflow Turbine Design and Analysis
,
American Society of Mechanical Engineers
,
New York
.
You do not currently have access to this content.