Carbon capture from advanced integrated gasification combined-cycle (IGCC) processes should outperform conventional coal combustion with subsequent CO2 separation in terms of efficiency and CO2 capture rates. This paper provides a thermodynamic assessment, using an exergy analysis of a syngas redox (SGR) process for generating electricity. The power island of the proposed process uses syngas produced by coal gasification and is then cleaned through a high-temperature gas desulfurization (HGD) process. Hematite (Fe2O3) is used as an oxygen carrier to oxidize the syngas. To achieve a closed-cycle operation, the reduced iron particles are first partially re-oxidized with steam and then fully re-oxidized with pressurized air. One advantage of this design is that the resulting hydrogen (using steam in the re-oxidation section) can be utilized within the same plant or be sold as a secondary product. In the proposed process, diluted hydrogen is combusted in a gas turbine. Heat integration is central to the design. Thus far, the SGR process and the HGD unit are not commercially availiable. To establish a benchmark, the rate of exergy destruction within the SGR process was compared to a coal-fed Shell gasification IGCC design with Selexol-based precombustion carbon capture. Some thermodynamic inefficiencies were found to shift from the gas turbine to the steam cycle and redox system, while the net efficiency remained almost the same. A process simulation was undertaken, using Aspen Plus and the engineering equation solver (EES).

References

2.
U.S. Energy Information Administration
,
2011
, “International Energy Outlook,” http://www.eia.gov/pressroom/presentations/howard_09192011.pdf
3.
U.S. Department of Energy
,
2010
, “
Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity
,” Report No. DOE/NETL-2010/1397.
4.
Knoche
,
K. F.
and
Richter
,
H.
,
1968
, “
Improvement of the Reversibility of Combustion Processes (Verbesserung der Reversibilitt von Verbrennungsprozessen)
,”
Brennst.- Waerme-Kraft
,
20
(
5
), pp.
205
210
.
5.
Jin
,
H.
and
Ishida
,
M.
,
2004
, “
A New Type of Coal Gas Fueled Chemical-Looping Combustion
,”
Fuel
,
83
, pp.
2411
2417
.10.1016/j.fuel.2004.06.033
6.
Fan
,
L.-S.
,
2010
,
Chemical-Looping Systems for Fossil Energy Conversions
,
John Wiley and Sons, Inc.
,
Hoboken, NJ
.
7.
Blazek
,
C. F.
,
Baker
,
N. R.
, and
Tison
,
R. R.
,
1979
, “
High-BTU Coal Gasification Processes
,” Institute of Gas Technology, Chicago, IL, Technical Report.
8.
Giuffrida
,
A.
,
Romano
,
M. C.
, and
Lozza
,
G. G.
,
2010
, “
Thermodynamic Assessment of IGCC Power Plants With Hot Fuel Gas Desulfurization
,”
Appl. Energy
,
87
, pp.
3374
3383
.10.1016/j.apenergy.2010.05.020
9.
Gupta
,
P.
,
Velazquez-Vargas
,
L. G.
, and
Fan
,
L.-S.
,
2007
, “
Syngas Redox (SGR) Process to Produce Hydrogen From Coal Derived Syngas
,”
Energy Fuels
,
21
, pp.
2900
2908
.10.1021/ef060512k
10.
Mattisson
,
T.
,
Garcia-Labiano
,
F.
,
Kronberger
,
B.
,
Lyngfelt
,
A.
,
Adanez
,
J.
, and
Hofbauer
,
H.
,
2007
, “
Chemical-Looping Combustion Using Syngas as Fuel
,”
Int. J. Greenhouse Gas Conf.
,
1
, pp.
158
169
.10.1016/S1750-5836(07)00023-0
11.
Velazquez-Vargas
,
L. G.
,
Thomas
,
T.
,
Gupta
,
P.
, and
Fan
,
L.-S.
,
2004
, “
Hydrogen Production Via Redox Reaction of Syngas With Metal Oxide Composite Particles
,”
Proceedings of the AIChE Annual Meeting
,
Austin, TX, November 7–12
.
12.
Perry
,
R. H.
and
Green
,
D. W.
,
2008
,
Perry's Chemical Engineers Handbook
, 8th ed.,
McGraw-Hill
,
Columbus
, OH.
13.
Wolf
,
J.
and
Yan
,
J.
,
2005
, “
Parametric Study of Chemical Looping Combustion for Tri-Generation of Hydrogen, Heat, and Electrical Power With CO2 Capture
,”
Int. J. Energy Res.
,
29
, pp.
739
753
.10.1002/er.1079
14.
Chiesa
,
P.
,
Lozza
,
G.
,
Malandrino
,
A.
,
Romano
,
M.
, and
Piccolo
,
V.
,
2008
, “
Three-Reactors Chemical Looping Process for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
33
, pp.
2233
2245
.10.1016/j.ijhydene.2008.02.032
15.
Xiang
,
W.
,
Chen
,
S.
,
Xue
,
Z.
, and
Sun
,
X.
,
2010
, “
Investigation of Coal Gasification Hydrogen and Electricity Coproduction Plant With Three-Reactors Chemical Looping Process
,”
Int. J. Hydrogen Energy
,
35
, pp.
8580
8591
.10.1016/j.ijhydene.2010.04.167
16.
Chen
,
S.
,
Xue
,
Z.
,
Wang
,
D.
, and
Xiang
,
W.
,
2012
, “
Hydrogen and Electricity Co-Production Plant Integrating Steam-Iron Process and Chemical Looping Combustion
,”
Int. J. Hydrogen Energy
,
37
, pp.
8204
8216
.10.1016/j.ijhydene.2012.02.098
17.
Cormos
,
C.-C.
,
2010
, “
Evaluation of Iron Based Chemical Looping for Hydrogen and Electricity Co-Production by Gasification Process With Carbon Capture and Storage
,”
Int. J. Hydrogen Energy
,
35
, pp.
2278
2289
.10.1016/j.ijhydene.2010.01.033
18.
Cormos
,
C.-C.
,
2012
, “
Evaluation of Syngas-Based Chemical Looping Applications for Hydrogen and Power Co-Generation With CCS
,”
Int. J. of Hydrogen Energy
,
37
, pp.
13371
13386
.10.1016/j.ijhydene.2012.06.090
19.
Anheden
,
M.
and
Svedberg
,
G.
,
1996
, “
Chemical Looping Combustion in Combination With Integrated Coal Gasification
,”
31st Intersociety Energy Conversion Engineering Conference
(
IECEC 96
), Washington, DC, August 11–16, pp. 2045–2050.10.1109/IECEC.1996.553434
20.
Xiang
,
W.
and
Wang
S.
,
2008
, “
Investigation of Gasification Chemical Looping Combustion Combined Cycle
,”
Energy Fuels
,
22
, pp.
961
966
.10.1021/ef7007002
21.
Erlach
,
B.
,
Schmidt
,
M.
, and
Tsatsaronis
,
G.
,
2011
, “
Comparison of Carbon Capture IGCC With Pre-Combustion Decarbonisation and With Chemical-Looping Combustion
,”
Energy
,
36
, pp.
3804
3815
.10.1016/j.energy.2010.08.038
22.
Aspen Plus
, 2013, Aspen Technology, Burlington, MA, http://www.aspentech.com/
23.
F-Chart, 2013, “EES: Engineering Equation Solver
, Professional Version,” F-Chart Software, Madison, WI, http://www.fchart.com/ees/
24.
Barin
,
I.
,
1989
,
Thermochemical Data of Pure Substances
,
VCH
,
Weinheim
, Germany.
25.
Chase
,
M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed.,
American Chemical Society
,
Washington, DC.
26.
Knacke
,
O.
,
Kubaschewski
,
O.
, and
Hesselmann
,
K.
,
1991
,
Thermochemical Properties of Inorganic Substances
, 2nd ed.,
Springer-Verlag
,
New York
.
28.
Lechner
,
C.
and
Seume
,
J.
,
2010
,
Stationäre Gasturbinen
,
Springer-Verlag
,
Berlin/Heidelberg
.
29.
Kail
,
C.
,
1998
, “
Analysis of Power Plant Processes Using Gas Turbines Under Energetic, Exergetic And Economic Aspects (Analyse von Kraftwerksprozessen mit Gasturbinen unter energetischen, exergetischen und ökonomischen Aspekten)
,” Ph.D. thesis, Technische Universität, München, Munich, Germany.
30.
Zheng
,
L.
and
Furinsky
,
E.
,
2005
, “
Comparison of Shell, Texaco, BGL and KRW Gasifier as Part of IGCC Plant Computer Simulations
,”
Energy Convers. Manage.
,
46
, pp.
1767
1779
.10.1016/j.enconman.2004.09.004
31.
Ullmann
,
1998
,
Ullmann's Encyclopedia of Industrial Chemistry
, 6th ed.,
Wiley-VCH
,
Weinheim
, Germany.
32.
Wheeler
,
F.
,
2003
, “
Potential for Improvements in Gasification Combined Cycle Power Generation With CO2 Capture
,”
IEA Greenhouse Gas R&D Programme
, Cheltenham, UK, Report No. PH
4/19.
33.
Doctor
,
R. D.
,
Molburg
,
J. C.
, and
Thimmapuram
,
P. R.
,
1996
, “
KRW Oxygen-Blown Gasification Combined Cycle-Carbon Dioxide Recovery Transport and Disposal
,” Energy Systems Division, Argonne National Laboratory, Argonne, IL.
34.
Burr
,
B.
and
Lyddon
,
L.
,
2008
, “
A Comparison of Physical Solvents for Acid Gas Removal
,” 87th Annual Gas Processors Association Convention, Grapevine, TX, March 2–5, pp. 100–113.
35.
Tennant
,
J.
,
2011
, “
Gasification Technologies Program Overview
,” National Energy Technology Laboratory, U.S. DOE, Washington, DC.
36.
Aysel
,
T. A.
,
2001
, “
Cleaner Energy Production With Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup From Coal Gas
,”
Clean Prod. Processes
,
2
, pp.
197
208
.10.1007/PL00011306
37.
Göke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Göckeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
.”
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
38.
Seiser
,
R.
and
Seshadri
,
K.
,
2005
, “
The Influence of Water on Extinction and Ignition of Hydrogen and Methane Flames
.”
Proc. Combust. Inst.
,
30
, pp.
407
414
.10.1016/j.proci.2004.08.220
39.
Frenkel
,
M.
,
Chirico
,
R.
,
Diky
,
V.
,
Yan
,
X.
,
Dong
,
Q.
, and
Muzny
,
C.
2005
, “
ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept
,”
J. Chem. Inf. Model.
,
45
, pp.
816
838
.10.1021/ci050067b
40.
Nelder
,
J.
and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
, p.
308
.10.1093/comjnl/7.4.308
41.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley and Sons, Inc.
,
New York
.
42.
Tsatsaronis
,
G.
,
2007
, “
Definitions and Nomenclature in Exergy Analysis and Exergoeconomics
,”
Energy
,
32
, pp.
249
253
.10.1016/j.energy.2006.07.002
43.
Szargut
,
J.
,
Morrison
,
D.
, and
Steward
,
F.
,
1988
,
Exergy Analysis of Thermal, Chemical and Metallurgical Processes
,
Springer-Verlag
,
Berlin
.
44.
Tsatsaronis
,
G.
and
Cziesla
,
F.
,
2002
, “
Thermoeconomics
,”
Encyclopedia of Physical Science and Technology
, 16th ed., Academic Press, New York, pp.
659
680
.
45.
Morozyuk
,
T.
and
Tsatsaronis
,
G.
,
2009
, “
Advanced Exergy Analysis for Chemically Reacting Systems Application to a Simple Open Gas-Turbine System
,”
Int. J. Thermodyn.
,
12
, pp.
105
111
.10.5541/ijot.245
You do not currently have access to this content.