The present work explores the capability of the transported probability density function (PDF) method to predict nitric oxide (NO) formation in turbulent combustion. To this end a hybrid finite-volume/Lagrangian Monte Carlo method is implemented into the THETA code of the German Aerospace Center (DLR). In this hybrid approach the transported PDF method governs the evolution of the thermochemical variables, whereas the flow field evolution is computed with a Reynolds-averaged Navier–Stokes (RANS) method. The method is used to compute a turbulent hydrogen-air flame and a methane-air flame and computational results are compared to experimental data. In order to assess the advantages of the transported PDF method, the flame computations are repeated with the “laminar chemistry” approach as well as with an “assumed PDF” method, which are both computationally less expensive. The present study reveals that the transported PDF method provides the highest accuracy in predicting the overall flame structure and nitric oxide formation.

References

1.
Fiolitakis
,
A.
,
Ess
,
P. R.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2012
, “
Transported PDF Calculations of a Turbulent, Non-Premixed, Non-Piloted, Hydrogen-Air Flame With Differential Diffusion
,”
Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
, Paper No. AIAA 2012-0179.
2.
Ferziger
,
J. H.
, and
Milovan
,
P.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
,
Berlin
.
3.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transf.
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
4.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disk
,”
Lett. Heat Mass Transf.
,
1
, pp.
131
138
.10.1016/0094-4548(74)90150-7
5.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,”
NASA Ames Research Center
, Moffett Field, CA, Tech. Rep. NASA-TM-110446.
6.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
, pp.
119
192
.10.1016/0360-1285(85)90002-4
7.
Pope
,
S. B.
,
1976
, “
The Probability Approach to the Modelling of Turbulent Reacting Flows
,”
Combust. Flame
,
27
, pp.
299
312
.10.1016/0010-2180(76)90035-3
8.
Janicka
,
J.
,
Kolbe
,
W.
, and
Kollman
,
W.
,
1979
, “
Closure of the Transport Equation for the Probability Density Function of Turbulent Scalar Fields
,”
J. Non-Equilibrium Thermodyn.
,
4
, pp.
47
66
.10.1515/jnet.1979.4.1.47
9.
Villermaux
,
J.
, and
Devillon
,
J.
,
1972
, “
Representation de la Coalescence et de la Redispersion des Domaines de Segregation Dans un Fluide par un Modele d’ Interaction Phenomenologique
,”
Second International Symposium on Chemical Reaction Engineering
, Elsevier, New York, pp.
1
13
.
10.
Arnold
,
L.
,
1973
,
Stochastische Differentialgleichungen: Theorie und Anwendung
,
R. Oldenburg Verlag
,
München
.
11.
Möbus
,
H.
,
2001
, “
Euler- und Lagrange-Monte-Carlo-PDF-Simulation Turbulenter Strömungs-, Mischungs- und Verbrennungsvorgänge
,” Ph.D. thesis, University of Stuttgart, Suttgart, Germany.
12.
Möbus
,
H.
,
Gerlinger
,
P.
, and
Brüggemann
,
D.
,
2001
, “
Comparison of Eularian and Lagrangian Monte Carlo PDF Methods for Turbulent Diffusion Flames
,”
Combust. Flame
,
124
, pp.
519
534
.10.1016/S0010-2180(00)00207-8
13.
Wang
,
H.
, and
Pope
,
S. B.
,
2008
, “
Time-Averaging Strategies in the Finite Volume/Particle Hybrid Algorithm for the Joint PDF Equation of Turbulent Reactive Flows
,”
Combust. Theory Model.
,
12
, pp.
529
544
.10.1080/13647830701847875
14.
Haselbacher
,
A.
,
Najjar
,
F. M.
, and
Ferry
,
J.
,
2007
, “
An Efficient and Robust Particle-Localization Algorithm for Unstructured Grids
,”
J. Computat. Phys.
,
225
, pp.
2198
2213
.10.1016/j.jcp.2007.03.018
15.
Gerlinger
,
P.
,
Möbus
,
H.
, and
Brüggemann
,
D.
,
2001
, “
An Implicit Multigrid Method for Turbulent Combustion
,”
J. Computat. Phys.
,
167
, pp.
247
276
.10.1006/jcph.2000.6671
16.
Di Domenico
,
M.
,
2007
, “
Numerical Simulations of Soot Formation in Turbulent Flows
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
17.
Gerlinger
,
P.
,
2005
,
Numerische Verbrennungssimulation: Effiziente numerische Simulation turbulenter Verbrennung
,
Springer-Verlag
,
Berlin
.
18.
Meier
,
W.
,
Prucker
,
S.
,
Cao
,
M.-H.
, and
Stricker
,
W.
,
1996
, “
Characterization of Turbulent H2
/N2
/Air Jet Diffusion Flames by Single-Puls Spontaneous Raman Scattering
,”
Combust. Sci. Tech.
,
118
, pp.
293
312
.10.1080/00102209608951983
19.
Neuber
,
A.
,
Krieger
,
G.
,
Tacke
,
M.
,
Hassel
,
E.
, and
Janicka
,
J.
,
1995
, “
In Situ Messung der Stickoxidkonzentration in Turbulenten Diffusionsflammen
,” 11. TECFLAM-Seminar: Verbrennungsdiagnostik und Prozeß kontrolle, Arbeitsgemeinschaft TECFLAM, pp.
83
99
.
20.
Cheng
,
T.-C.
,
Fruechtel
,
G.
,
Neuber
,
A.
,
Lipp
,
F.
,
Hassel
,
E. P.
, and
Janicka
,
J.
,
1995
, “
Experimental Data Base for Numerical Simulations of Turbulent Diffusion Flames
,”
Forschung im Ingenieurwesen Eng. Res.
,
61
, pp.
165
171
.10.1007/BF02628793
21.
Peters
,
N.
, and
Rogg
,
B.
,
1993
,
Reduced Kinetic Mechanisms for Applications in Combustion Systems
,
Springer
, Berlin.
22.
San Diego Mechanism, accessed Sep. 25,
2008
, http://maeweb.ucsd.edu/combustion/Mechanisms
23.
Fiolitakis
,
A.
,
Gerlinger
,
P.
,
Noll
,
B.
,
Aigner
,
M.
,
Krebs
,
W.
, and
Wegner
,
B.
,
2010
, “
A Novel Progress Variable Approach for Predicting NO in Laminar Hydrogen Flames
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Paper No. AIAA 2010-608.
24.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
,
Jr., Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
,
1995
,
Gri 2.11 mechanism
, accessed June 6,
2011
. http://www.me.berkeley.edu/griech/
25.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R.
,
1997
,
Verbrennung: Physikalisch-Chemische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffentstehung
,
Springer, Berlin
.
26.
Barlow
,
R. S.
, and
Frank
,
J. H.
,
1998
, “
Effects of Turbulence on Species Mass Fractions in Methane/Air Jet Flames
,”
Proc. Combust. Inst.
,
27
, pp.
1087
1095
.10.1016/S0082-0784(98)80510-9
27.
Barlow
,
R. S.
,
Frank
,
J. H.
,
Karpetis
,
A. N.
, and
Chen
,
J.-Y.
,
2005
, “
Piloted Methane/Air Jet Flames: Scalar Structure and Transport Effects
,”
Combust. Flame
,
143
, pp.
433
449
.10.1016/j.combustflame.2005.08.017
28.
Schneider
,
C.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2003
, “
Flow Field Measurements of Stable and Locally Extinguishing Hydrocarbon-Fuelled Jet Flames
,”
Combust. Flame
,
135
, pp.
185
190
.10.1016/S0010-2180(03)00150-0
29.
TNF workshop, accessed April 9,
2012
, http://www.sandia.gov/TNF/abstract.html
30.
Raman
, V
.
,
Fox
,
R. O.
, and
Harvey
,
A. D.
,
2004
, “
Hybrid Finite-Volume/Transported PDF Simulations of a Partially Premixed Methane-Air Flame
,”
Combust. Flame
,
136
, pp.
327
350
.10.1016/j.combustflame.2003.10.012
31.
Barlow
,
R.
,
Karpetis
,
A.
Frank
,
J.
, and
Chen
,
J.-Y.
,
2001
, “
Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames
,”
Combust. Flame
,
127
, pp.
2102
2118
.10.1016/S0010-2180(01)00313-3
32.
Correa
,
S. M.
,
1992
, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Tech.
,
87
, pp.
329
362
.10.1080/00102209208947221
33.
Habisreuther
,
P.
,
2002
, “
Untersuchungen zur Bildung von Thermischem Stickoxid in Turbulenten Drallflammen
,” Ph.D. thesis, Universität Fredericiana Karlsruhe (Technische Hochschule), Karlsruhe, Germany.
34.
Mancini
,
M.
,
Weber
,
R.
, and
Bollettini
,
U.
,
2002
, “
Predicting NOx Emissions of a Burner Operated in Flameless Oxidation Mode
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1155
1163
.10.1016/S1540-7489(02)80146-8
You do not currently have access to this content.