The energy-based lifing method is based on the theory that the cumulative energy in all hysteresis loops of a specimens' lifetime is equal to the energy in a monotonic tension test. Based on this theory, fatigue life can be calculated by dividing monotonic strain energy by a hysteresis energy model, which is a function of stress amplitude. Recent studies have focused on developing this method for a sine wave loading pattern—a variable strain rate. In order to remove the effects of a variable strain rate throughout the fatigue cycle, a constant strain rate triangle wave loading pattern was tested. The testing was conducted at various frequencies to evaluate the effects of multiple constant strain rates. Hysteresis loops created with sine wave loading and triangle loading were compared. The effects of variable and constant strain rate loading patterns on hysteresis loops throughout a specimens' fatigue life are examined.

References

1.
Nicholas
,
T.
,
1999
, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fatigue
,
21
, pp.
S221
S231
.10.1016/S0142-1123(99)00074-2
2.
United States Air Force, 2004, “Department of Defense Handbook: Engine Structural Integrity Program (EnSIP),” Paper No. MIL-HDBK-1783B w/Change 2.
3.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
, “
An Energy-Based Uniaxial Fatigue Life Prediction Method for Commonly Used Gas Turbine Engines Materials
,”
ASME J. Eng. Gas Turbines Power
,
130
(6), p.
062504
.10.1115/1.2943152
4.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2010
, “
Multi-Axial Fatigue-Life Prediction Via a Strain-Energy Method
,”
AIAA J.
,
48
(
1
), pp.
63
72
.10.2514/1.39296
5.
Ozaltun
,
H.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2011
, “
An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components
,”
J. Exp. Mech.
,
51
(
5
), pp.
707
718
. 10.1007/s11340-010-9365-z
6.
Wertz
,
J.
,
Shen
,
M.-H. H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
,
2012
, “
An Energy-Based Torsional-Shear Fatigue Lifing Method
,”
Exp. Mech.
,
52
(
7
), pp.
705
715
. 10.1007/s11340-011-9536-6
7.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Cross
,
C.
, and
Shen
,
M.-H. H.
,
2010
, “
Hysteresis Loop Representation for Strain Energy Calculation and Fatigue Assessment
,”
J. Strain Anal. Eng. Design
,
45
(
4
), pp.
275
282
.10.1243/03093247JSA602
8.
Letcher
,
T.
,
Shen
,
H.
,
Scott-Emuakpor
,
O.
,
George
,
T.
, and
Cross
,
C.
, “
An Energy Based Critical Fatigue Life Prediction Method for AL6061-T6
,”
Fatigue Fracture Eng. Mater. Struct.
,
35
(
9
), pp.
861
870
.10.1111/j.1460-2695.2011.01669.x
9.
Tarar
,
W.
,
Scott-Emuakpor
,
O.
, and
Shen
,
M.-H. H.
,
2010
, “
Development of New Finite Elements for Fatigue Life Prediction in Structural Components
,”
J. Struct. Eng. Mech.
,
35
(
6
), pp.
659
676
.10.12989/sem.2010.35.6.659
10.
Jasper
,
T. M.
,
1923
, “
The Value of the Energy Relation in the Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate and High Temperatures
,”
Philos. Mag. Ser.
,
46
, pp.
609
627
.10.1080/14786442308634287
11.
Enomoto
,
N.
,
1965
, “
On Fatigue Tests Under Progressive Stress
,”
Proc. ASTM
,
55
, pp.
903
917
.
12.
Stowell
,
E.
,
1966
, “
A Study of the Energy Criterion for Fatigue
,”
Nucl. Eng. Design
,
3
,
pp 32
40
.10.1016/0029-5493(66)90146-4
13.
Tarar
,
W.
,
Shen
,
M.-H. H.
,
George
,
T.
, and
Cross
,
C.
,
2010
, “
A New Finite Element Procedure for Fatigue Life Prediction of Al6061 Plates Under Multiaxial Loadings
,”
J. Struct. Eng. Mech.
,
35
(
5
), pp.
571
592
.10.12989/sem.2010.35.5.571
14.
Miller
,
K. J.
, and
Rizk
,
M. N.
,
1968
, “
Effects of Strain Rate on Low-Endurance Torsional Fatigue in Commercially Pure Aluminum
,”
J. Strain Anal.
,
3
(
4
), pp.
273
280
.10.1243/03093247V034273
15.
Miller
,
K. J.
,
1967
, “
Strain Rate Effects on Low Endurance Fatigue
,”
Nature
,
213
, pp.
317
318
.10.1038/213317a0
16.
MayerCampbell Laird
,
H.
,
1995
, “
Frequency Effects on Cyclic Plastic Strain of Polycrystalline Copper Under Variable Loading
,”
Mater. Sci. Eng. A
,
194
(
2
), pp.
137
145
.10.1016/0921-5093(94)09670-8
17.
American Society of Test and Materials
,
2007
, “
ASTM E466: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,”
Annual Book of ASTM Standards
, Vol. 03.01,
ASTM International
,
West Conshohocken, PA
.
18.
AMS D Nonferrous Alloys Committee
,
2008
, “
SAE AMS 2772-E: Heat Treatment of Aluminum Alloy Raw Materials
,” SAE, Warrendale, PA.
19.
American Society for Test and Materials
,
2008
, “
ASTM B211-03-M: Standard Specification for Aluminum and Aluminum-Alloy Bar Rod and Wire
,”
Annual Book of ASTM Standards
, Vol.
02.02
,
ASTM International
,
West Conshohocken, PA
.
20.
American Society for Test and Materials
,
2008
, “
ASTM E8/E8M-08: Standard Test Methods for Tension Testing of Metallic Materials
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
ASTM International
,
West Conshohocken, PA
.
21.
MTS TestStar IIs Software, Eden Prairie, MN.
You do not currently have access to this content.