The steam turbine cooldown has a significant impact on the cyclic fatigue life. A lower initial metal temperature after standstill results in a higher temperature difference to be overcome during the next start-up. Generally, lower initial metal temperatures result in higher start-up stress. In order to optimize steam turbines for cyclic operation, it is essential to fully understand natural cooling, which is especially challenging for rotors. This paper presents a first-in-time application of a 2D numerical procedure for the assessment of the thermal regime during natural cooling, including the rotors, casings, valves, and main pipes. The concept of the cooling calculation is to replace the fluid gross buoyancy during natural cooling by an equivalent fluid conductivity that gives the same thermal effect on the metal parts. The fluid equivalent conductivity is calculated based on experimental data. The turbine temperature was measured with pyrometric probes on the rotor and with standard thermocouples on inner and outer casings. The pyrometric probes were calibrated with standard temperature measurements on a thermo well, where the steam transmittance and the rotor metal transmissivity were measured.

References

1.
Ruffino
,
P.
, and
Mohr
,
W.
,
2012
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components: Part 1—Temperature Measurements With Optical Probes
,”
ASME
Paper No. GT2012-68703.10.1115/GT2012-68703
2.
Dobler
,
T.
,
Haffner
,
K.
, and
Evers Wolfgang
, 1998, “
Optic Pyrometer for Gas Turbines
,” U. S, Patent No. 6,109,783.
3.
Kempe
,
A.
,
Schlamp
,
S.
,
Rösgen
,
T.
, and
Haffner
,
K.
,
2006
, “
Optical Tip-Clearance Probe for Harsh Environments
,”
The XVIII Symposium on Measuring Techniques in Turbomachinery
,
Thessaloniki, Greece
, September 21–22.
4.
Kirby
,
P. J.
,
Zachary
,
R. E.
, and
Ruiz
,
F.
,
1986
, “
Infrared Thermometry for Control and Monitoring of Industrial Gas Turbines
,” ASME Paper No. 86-GT-267.
5.
Phelan
,
R.
,
Lynch
,
M.
,
Donegan
,
J. F.
, and
Weldon
,
V.
,
2003
, “
Absorption Line Shift With Temperature and Pressure Impact on Laser-Diode-Based H2O Sensing at 1.393 μm
,”
Appl. Opt.
,
42
, pp.
4968
4974
.10.1364/AO.42.004968
6.
Smith
,
K. M.
,
Ptashnik
,
I.
,
Newnham
,
D. A.
, and
Shine
,
K. P.
,
2004
, “
Absorption by Water Vapour in the 1 to 2 μm Region
,”
J. Quant. Spec. Radiat. Transfer
,
83
, pp.
735
749
.10.1016/S0022-4073(03)00119-5
7.
Rothman
,
L. S.
,
Jacquemart
,
D.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Birk
,
M.
,
Brown
,
L. R.
,
Carleer
,
M. R.
,
Chackerian
, Jr.
C.
,
Chance
,
K.
,
Coudert
,
L. H.
,
Dana
,
V.
,
Devi
,
V. M.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Hartmann
,
J.-M.
,
Jucks
,
K. W.
,
Maki
,
A. G.
,
Mandin
,
J.-Y.
,
Massie
,
S. T.
,
Orphal
,
J.
,
Perrin
,
A.
,
Rinsland
,
C. P.
,
Smith
,
M. A. H.
,
Tennyson
,
J.
,
Tolchenov
,
R. N.
,
Toth
,
R. A.
,
Vander Auwera
,
J.
,
Varanasi
,
P.
, and
Wagner
,
G.
,
2005
, “The HITRAN 2004 Molecular Spectroscopic Database,”
J. Quant. Spectrosc. Radiat. Transfer
,
96
, pp.
139
204
.10.1016/j.jqsrt.2004.10.008
8.
Dicke
,
R. H.
,
1953
, “
The Effect of Collisions Upon the Doppler Width of Spectral Lines
,”
Phys. Rev.
,
89
, pp.
472
473
.10.1103/PhysRev.89.472
9.
Galatry
,
L.
,
1961
, “
Simultaneous Effect of Doppler and Foreign Gas Broadening of Spectral Lines
,”
Phys. Rev.
,
122
, pp.
1218
1223
.10.1103/PhysRev.122.1218
10.
Goldstein
,
R.
,
1964
, “
Quantitative Spectroscopic Studies on the Infrared Absorption
,” Ph.D. thesis, Caltech, Pasadena, CA.
11.
Rieker
,
G.
,
Liu
,
X.
,
Li
,
H.
,
Jeffries
,
J.
, and
Hanson
,
R.
,
2007
, “
Measurement of Near-IR Water Vapor Absorption at High Pressure and Temperature
,”
Appl. Phys.
B87
, pp.
169
178
.10.1007/s00340-006-2523-4
12.
Nagali
,
V.
,
Herbon
,
J. T.
,
Horning
,
D. C.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
1999
, “
Shock-Tube Study of High-Pressure H2O Spectroscopy
,”
Appl. Opt.
,
38
(
33
), pp.
6942
6950
.10.1364/AO.38.006942
13.
SpectralCalc, 2013, “High-Resolution Spectral Modeling,” GATS, Inc., Newport News, VA, www.spectralcalc.com
14.
Marinescu
,
G.
, and
Ehrsam
,
A.
,
2012
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components: Part 2—Natural Cooling of Steam Turbines and the Impact on LCF Life
,”
ASME
Paper No. GT2012-68759.10.1115/GT2012-68759
15.
Spelling
,
J.
,
Jöcker
,
M.
, and
Martin
,
A.
,
2011
, “
Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction
,”
ASME
Paper No. GT2011-45686.10.1115/GT2011-45686
You do not currently have access to this content.