Swirl-stabilized, nonpremixed ethylene/air flames were investigated at pressures up to 5 bar to study the effect of different operating parameters on soot formation and oxidation. Focus of the experiments was the establishment of a database describing well-defined flames, serving for validation of numerical simulation. Good optical access via pressure chamber windows and combustion chamber windows enables application of laser-induced incandescence to derive soot volume fractions after suitable calibration. This results in ensemble averaged, as well as instantaneous soot distributions. Beyond pressure, parameters under study were the equivalence ratio, thermal power, and amount of oxidation air. The latter could be injected radially into the combustor downstream of the main reaction zone through holes in the combustion chamber posts. Combustion air was introduced through a dual swirl injector whose two flow rates were controlled separately. The split of those air flows provided an additional parameter variation. Nominal power of the operating points was approximately 10 kW/bar leading to a maximum power of roughly 50 kW, not including oxidation air.

References

1.
Mandatori
,
P. M.
, and
Gülder
,
Ö. L.
,
2011
, “
Soot Formation in Laminar Ethane Diffusion Flames at Pressures From 0.2 to 3.3 MPa
,”
Proc. Combust. Inst.
33
, pp.
577
584
.10.1016/j.proci.2010.06.004
2.
Köhler
,
M.
,
Geigle
,
K. P.
,
Blacha
,
T.
,
Gerlinger
,
P.
, and
Meier
,
W.
,
2012
, “
Experimental Characterization and Numerical Simulation of a Sooting Lifted Turbulent Jet Diffusion Flame
,”
Combust. Flame
,
159
, pp.
2620
2635
.10.1016/j.combustflame.2012.01.015
3.
Carl
,
M.
,
Behrendt
,
T.
,
Fleing
,
C.
,
Frodermann
,
M.
,
Heinze
,
J.
,
Hassa
,
C.
,
Meier
,
U. E.
,
Wolff-Gaßmann
,
D.
,
Hohmann
,
S.
, and
Zarzalis
,
N.
,
2001
, “
Experimental and Numerical Investigation of a Planar Combustor Sector at Realistic Operating Conditions
,”
ASME J. Eng. Gas Turbine Power
,
123
, pp.
810
816
.10.1115/1.1378298
4.
Meyer
,
T. R.
,
Roy
,
S.
,
Belovich
,
V. M.
,
Corporan
,
E.
, and
Gord
,
J. R.
,
2005
, “
Simultaneous Planar Laser-Induced Incandescence, OH Planar Laser-Induced Fluorescence, and Droplet Mie Scattering in Swirl-Stabilized Spray Flames
,”
Appl. Opt.
,
44
, pp.
445
454
.10.1364/AO.44.000445
5.
Geigle
,
K. P.
,
Zerbs
,
J.
,
Köhler
,
M.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2011
,“
Experimental Analysis of Soot Formation and Oxidation in a Gas Turbine Model Combustor Using Laser Diagnostics
,”
ASME J. Eng. Gas Turbine Power
,
133
(
12
), p.
121503
.10.1115/1.4004154
6.
Lammel
,
O.
,
Geigle
,
K. P.
,
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2007
, “
Investigation of Soot Formation and Oxidation in a High-Pressure Gas Turbine Model Combustor by Laser Techniques
,”
Proceedings of the ASME Turbo Expo 2007: Power for Land, Sea and Air
,
Montreal, Canada, May 14–17
,
ASME
Paper No. GT2007-27902.10.1115/GT2007-27902
7.
Blacha
,
T.
,
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Aigner
,
M.
,
2011
, “
Soot Predictions in Premixed and Non-Premixed Flames Using a Sectional Approach for PAHs and Soot
,”
Combust. Flame
,
159
, pp.
181
193
.10.1016/j.combustflame.2011.07.006
8.
Donde
,
P.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
LES/PDF Based Modeling of Soot-Turbulence Interactions in Turbulent Flames
,”
Proc. Combust. Inst.
,
34
, pp.
1183
1192
.10.1016/j.proci.2012.07.055
9.
Tsurikov
,
M. S.
,
Geigle
,
K. P.
,
Krüger
,
V.
,
Schneider-Kühnle
,
Y.
,
Stricker
,
W.
,
Lückerath
,
R.
,
Hadef
,
R.
, and
Aigner
,
M.
,
2005
, “
Laser-Based Investigation of Soot Formation in Laminar Premixed Flames at Atmospheric and Elevated Pressures
,”
Combust. Sci. Technol.
,
177
, pp.
1835
1862
.10.1080/00102200590970212
10.
Tsurikov
,
M. S.
,
Meier
,
W.
, and
Geigle
,
K. P.
,
2006
, “
Investigations of a Syngas-Fired Gas Turbine Model Combustor by Planar Laser Techniques
,”
Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea and Air
,
Barcelona, Spain, May 8–11
,
ASME
Paper No. GT2006-90344.10.1115/GT2006-90344
11.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor. Part I: Flow Field, Structures, Temperature, and Species Distributions
,”
Combust. Flame
,
144
, pp.
205
224
.10.1016/j.combustflame.2005.07.010
12.
Rebosio
,
F.
,
Widenhorn
,
A.
,
Noll
,
B.
, and
Aigner
,
M.
,
2010
, “
Numerical Simulation of a Gas Turbine Model Combustor Operated Near the Lean Extinction Limit
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea and Air
, Glasgow, UK, June 14–16,
ASME
Paper No. GT2010-22751.10.1115/GT2010-22751
13.
Santoro
,
R. J.
, and
Shaddix
,
C. R.
,
2002
, “
Laser-Induced Incandescence
,”
Applied Combustion Diagnostics
,
K.
Kohse-Höinghaus
and
J.
Jeffries
, ed.,
Taylor and Francis
,
London
, Chap. 9.
14.
Trottier
,
S.
,
Guo
,
H.
,
Smallwood
,
G. J.
, and
Johnson
,
M. R.
,
2007
, “
Measurement and Modeling of the Sooting Propensity of Binary Fuel Mixtures
,”
Proc. Combust. Inst.
,
31
, pp.
611
619
.10.1016/j.proci.2006.07.229
15.
Zerbs
,
J.
,
Geigle
,
K. P.
,
Lammel
,
O.
,
Hader
,
J.
,
Stirn
,
R.
,
Hadef
,
R.
, and
Meier
,
W.
,
2009
, “
The Influence of Wavelength in Extinction Measurements and Beam Steering in Laser-Induced Incandescence Measurements in Sooting Flames
,”
Appl. Phys. B
,
96
, pp.
683
694
.10.1007/s00340-009-3550-8
16.
Karatas
,
A. E.
, and
Gülder
,
Ö. L.
,
2012
, “
Soot Formation in High Pressure Laminar Diffusion Flames
,”
Prog. Energy Combust.
,
38
, pp.
818
845
.10.1016/j.pecs.2012.04.003
17.
Qamar
,
N. H.
,
Alwahabi
,
Z. T.
,
Chan
,
Q. N.
,
Nathan
,
G. J.
,
Roekaerts
,
D.
, and
King
,
K. D.
,
2009
, “
Soot Volume Fraction in a Piloted Turbulent Jet Non-Premixed Flame of Natural Gas
,”
Combust. Flame
,
156
, pp.
1339
1347
.10.1016/j.combustflame.2009.02.011
You do not currently have access to this content.