A skeletal mechanism (144 species) and a corresponding reduced mechanism (62 species) were developed on the basis of the most recent detailed n-heptane mechanism by Lawrence Livermore National Laboratories (LLNL, version 3.1, 2012) (Mehl et al., 2011, “Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions,” Proc. Combust. Inst., 33, pp. 193–200), in order to assess the mechanism's performance under various practical combustion conditions. These simplified mechanisms were constructed and validated under shock tube conditions. Three-dimensional computational fluid dynamics (3D CFD) simulations with both simplified mechanisms were conducted for the following modeling applications: ignition quality tester (IQT), diesel engine, and homogeneous charge compression ignition (HCCI) engine. In comparison with experimental data, the simulation results were found satisfactory under the diesel condition but inaccurate for both the IQT and HCCI conditions. For HCCI, the intake temperature used in the simulation had to be increased 30 K in order to be consistent with the engine data provided by Guo et al. (2010, “An Experimental and Modeling Study of HCCI Combustion Using n-Heptane,” ASME J. Eng. Gas Turbines Power, 132(2), 022801). Exploration of possible causes is conducted leading to the conclusion that refinement in the mechanism is needed for accurate prediction of combustion under IQT and HCCI conditions.

References

1.
Lindstedt
,
R. P.
, and
Maurice
,
L. Q.
,
1995
, “
Detailed Kinetic Modeling of n-Heptane Combustion
,”
Combust. Sci. Technol.
,
107
(4–6), pp.
317
353
.10.1080/00102209508907810
2.
Held
,
T. J.
,
Marchese
,
A. J.
, and
Dryer
,
F. L.
,
1997
, “
A Semi-Empirical Reaction Mechanism for n-Heptane Oxidation and Pyrolysis
,”
Combust. Sci. Technol.
,
123
(1–6), pp.
107
146
.10.1080/00102209708935624
3.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(1–2), pp.
149
177
.10.1016/S0010-2180(97)00282-4
4.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(1), pp.
193
200
.10.1016/j.proci.2010.05.027
5.
Chen
,
J. Y.
,
2001
, “
Automatic Generation of Reduced Mechanisms and Their Applications to Combustion Modeling
,” Trans. Aeronaut. Astronaut. Soc. ROC,
33
(2), pp.
59
67
(in Chinese), available at: http://www.airitilibrary.com/Publication/alDetailedMesh?docid=10220666-200106-200907010045-200907010045-59-67
6.
Hong
,
S.
,
Assanis
,
D. N.
,
Wooldridge
,
M. S.
,
Im
,
H. G.
,
Kurtz
,
E.
, and
Pitsch
,
H.
,
2004
, “
Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept
,”
SAE
Technical Paper 2004-01-0107.10.4271/2004-01-0107
7.
Hong
,
S.
,
Wooldridge
,
M. S.
,
Im
,
H. G.
,
Assanis
,
D. N.
, and
Kurtz
,
E.
,
2008
, “
Modeling of Diesel Combustion, Soot, and NO Emissions Based on a Modified Eddy Dissipation Concept
,”
Combust. Sci. Technol.
,
180
(8), pp.
1421
1448
.10.1080/00102200802119340
8.
Tham
,
Y. F.
,
Bisetti
,
F.
, and
Chen
,
J. Y.
,
2008
, “
Development of a Highly Reduced Mechanism for Iso-Octane HCCI Combustion With Targeted Search Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042804
.10.1115/1.2900729
9.
Turanyi
,
T.
,
Tomlin
,
A. S.
, and
Pilling
,
M. J.
,
1993
, “
On the Error of the Quasi-Steady-State Approximation
,”
J. Phys. Chem.
,
97
(1), pp.
163
172
.10.1021/j100103a028
10.
Soyhan
,
H. S.
,
Amnéus
,
P.
,
Løvås
,
T.
,
Nilsson
,
D.
,
Maigaard
,
P.
,
Mauss
,
F.
, and
Sorusbay
,
C.
,
2000
, “
Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under SI Engine Conditions
,”
SAE
Technical Paper 2000-01-1895.10.4271/2000-01-1895
11.
Wolk
,
B.
, and
Chen
,
J. Y.
,
2014
, “
Computational Study of Partial Fuel Stratification for HCCI Engines Using Gasoline Surrogate Reduced Mechanism
,”
Combust. Sci. Technol.
,
186
(3), pp.
332
354
.10.1080/00102202.2013.870161
12.
Mehl
,
M.
,
Chen
,
J. Y.
,
Pitz
,
W. J.
,
Sarathy
,
S. M.
, and
Westbrook
,
C. K.
,
2001
, “
An Approach for Formulating Surrogates for Gasoline With Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling
,”
Energy Fuels
,
25
(11), pp.
5215
5223
.10.1021/ef201099y
13.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1992
, “
Chemkin-II: Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND89-8009B.
14.
Ciezki
,
H. K.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane–Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(4), pp.
421
433
.10.1016/0010-2180(93)90142-P
15.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13313-MS.
16.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
,
CONVERGE (Version 1.4.1)
,
Convergent Science, Inc.
,
Middleton, WI
.
17.
Allard
,
L. N.
,
Webster
,
G. D.
,
Hole
,
N. J.
,
Ryan
,
T. W.
,
Ott
,
D.
, and
Fairbridge
,
C. W.
,
1996
, “
Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT)
,”
SAE
Technical Paper No. 961182.10.4271/961182
18.
Allard
,
L. N.
,
Webster
,
G. D.
,
Ryan
,
T. W.
,
Ott
,
D.
,
Beregszaszy
,
A.
,
Fairbridge
,
C. W.
,
Cooley
,
J.
,
Mitchell
,
K.
,
Richardson
,
E. K.
,
Elliot
,
N. G.
, and
Rickeard
,
D. J.
,
1997
, “
Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™)—Part II
,”
SAE
Technical Paper No. 971636.10.4271/971636
19.
Allard
,
L. N.
,
Webster
,
G. D.
,
Ryan
,
T. W.
,
Baker
,
G.
,
Beregszaszy
,
A.
,
Fairbridge
,
C. W.
,
Ecker
,
A.
, and
Rath
,
J.
,
1999
, “
Analysis of the Ignition Behaviour of the ASTM D-613 Primary Reference Fuels and Full Boiling Range Diesel Fuels in the Ignition Quality Tester (IQT™)—Part III
,”
SAE
Technical Paper No. 1999-01-3591.10.4271/1999-01-3591
20.
Allard
,
L. N.
,
Webster
,
G. D.
,
Ryan
,
T. W.
,
Matheaus
,
A. C.
,
Baker
,
G.
,
Beregszaszy
,
A.
,
Read
,
H.
,
Mortimer
,
K.
, and
Jones
,
G.
,
2001
, “
Diesel Fuel Ignition Quality as Determined in the Ignition Quality Tester (IQT™)—Part IV
,”
SAE
Technical Paper No. 2001-01-3527.10.4271/2001-01-3527
21.
ASTM,
2008
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,” ASTM International, West Conshohocken, PA,
ASTM
Paper No. D6890-08.10.1520/D6890-08
22.
ASTM,
2003
, “
Standard Test Method for Cetane Number of Diesel Fuel Oil
,” ASTM International, West Conshohocken, PA,
ASTM
Paper No. D613-03b.10.1520/D0613-03B
23.
ASTM,
2006
, “
Interlaboratory Study to Establish Precision Statements for ASTM D6890, Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,” Committee D02 on Petroleum Products and Lubricants, Subcommittee D02.01 on Combustion Characteristics, ASTM International, West Conshohocken, PA, ASTM Research Report No. D02-1602.
24.
ASTM,
2002
, “
Interlaboratory Study to Establish Precision Statements for ASTM D613, Standard Test Method for Cetane Number of Diesel Fuel Oil
,” Committee D02 on Petroleum Products and Lubricants, Subcommittee D02.01 on Combustion Characteristics, ASTM International, West Conshohocken, PA, ASTM Research Report No. D02-1532.
25.
ASTM,
2002
, “
Development of the IQT™ Model to Calculate the Derived Cetane Number (DCN)
,” Committee D02 on Petroleum Products and Lubricants, Subcommittee D02.01 on Combustion Characteristics, ASTM International, West Conshohocken, PA, ASTM Research Report No. D02-1531.
26.
Patterson
,
M. A.
, and
Reitz
,
R. D.
,
1998
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions
,”
SAE
Technical Paper No. 980131.10.4271/980131
27.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects in Vaporizing Liquid Sprays
,” Ph.D. thesis 1532-T, Princeton University, Princeton, NJ.
28.
Martinelli
,
L.
,
Reitz
,
R. D.
, and
Bracco
,
F. V.
,
1983
, “
Comparison of Computed and Measured Dense Spray Jets
,” Ninth International Colloquium on Dynamics of Explosions and Reactive Systems (
ICDERS
), Poitiers, France, July 3–8, pp. 484–512.10.2514/5.9781600865701.0484.0512
29.
Chatwani
,
A. U.
, and
Bracco
,
F. V.
,
1985
, “
Computation of Dense Spray Jets
,”
3rd International Conference on Liquid Atomisation and Spray Systems (ICLASS-85)
, London, July 8–10.
30.
Bracco
,
F. V.
,
1985
, “
Modeling of Engine Sprays
,”
SAE
Technical Paper 850394.10.4271/850394
31.
Williams
,
F. A.
,
1958
, “
Spray Combustion and Atomization
,”
Phys. Fluids
,
1
(6), pp.
541
546
.10.1063/1.1724379
32.
Bogin
,
G. E.
, Jr.
,
DeFilippo
,
A.
,
Chen
,
J.-Y.
,
Chin
,
G.
,
Luecke
,
J.
,
Ratcliff
,
M. A.
,
Zilger
,
B. T.
, and
Dean
,
A. M.
,
2011
, “
Numerical and Experimental Investigation of n-Heptane Autoignition in the Ignition Quality Tester (IQT)
,”
Energy Fuels
,
25
(12), pp.
5562
5572
.10.1021/ef201079g
33.
Tsai
,
H. L.
, and
Chiu
,
H. H.
,
2005
, “
Anomalous Group Combustion in DI Diesel Engine
,”
Atomization Sprays
,
15
(
4
), pp.
377
400
.10.1615/AtomizSpr.v15.i4.20
34.
Guo
,
H.
,
Neill
,
W. S.
,
Chippior
,
W.
,
Li
,
H.
, and
Taylor
,
J. D.
,
2010
, “
An Experimental and Modeling Study of HCCI Combustion Using n-Heptane
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022801
.10.1115/1.3124667
35.
Sjöberg
,
M.
, and
Dec
,
J. E.
,
2004
, “
An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines
,”
SAE
Technical Paper 2004-01-1900.10.4271/2004-01-1900
36.
Zhang
,
Y. Z.
,
Kung
,
E. H.
, and
Haworth
,
D. C.
,
2005
, “
A PDF Method for Multidimensional Modeling of HCCI Engine Combustion: Effects of Turbulence/Chemistry Interactions on Ignition Timing and Emissions
,”
Proc. Combust. Inst.
,
30
(2), pp.
2763
2771
.10.1016/j.proci.2004.08.236
You do not currently have access to this content.