This paper presents an analysis about recovering low-grade thermal energy from a precombustion CO2 capture process as part of an integrated gasification combined cycle (IGCC) power plant by means of organic rankine cycle (ORC) turbogenerators. The distinguishing feature of this system is the thermal energy source that is a syngas-water mixture, which is cooled from a temperature of approximately 140 °C, and partly condenses due to the heat transfer to the ORC primary heat exchanger. This study explores various types of ORC power systems for this application. The performance of commercially available ORC units is used as a benchmark and compared to the performance of two types of tailor-designed ORC power plants. The working fluid has a major influence on system performance and other technical and economic factors. The effect of selecting a fluid from the hydrocarbon and refrigerant families are therefore investigated, targeting the maximum net power output. In addition to pure fluids, two-component mixtures are also considered. The use of mixtures as working fluids in subcritical heat-recovery ORC systems allows for a better match of the temperature profiles in the primary heat exchanger and the condenser due to the temperature glide associated with phase-transition, leading to lower irreversibilities within the heat exchanging equipment. In order to further improve the thermal coupling between the cooling heat source and the heating of the working fluid, the supercritical cycle configuration is also studied. The performance of the three categories of systems, depending on working fluid and cycle configuration, i.e., systems based on (i) commercially available units, (ii) tailor-designed subcritical cycle, (iii) tailor-designed supercritical cycle, are analyzed in terms of net power output, second law efficiency, and component-based exergy efficiencies. The analysis shows that an improvement of 38.0% in terms of net power output compared to the benchmark system can be achieved by an optimized supercritical ORC power plant using an R134a/R236fa mixture as the working fluid. It is estimated that the total power consumption of the considered exemplary CO2 capture plant can be reduced by approximately 10% with the optimal ORC system. In this study, particular attention is focused on the semi-empirical optimization approach, in order to avoid unnecessary computations, and general guidelines are provided.

References

1.
International Energy Agency
,
2011
, “CO2 Emission from Fuel Combustion,”
IEA
,
Paris
.
2.
Stangeland
,
A.
,
2007
, “
A Model for CO2 Capture Potential
,”
Int. J. Greenhouse Gas Control
,
1
(
4
), pp.
418
429
.10.1016/S1750-5836(07)00087-4
3.
Damen
,
K.
,
Gnutek
,
R.
,
Kaptein
,
J.
,
Nannan
,
N.
,
Oyarzun
,
B.
,
Trapp
,
C.
,
Colonna
,
P.
,
van Dijk
,
E.
,
Gross
,
J.
, and
Bardow
,
A.
,
2011
, “
Developments in the Pre-Combustion CO2 Capture Pilot Plant at the Buggenum IGCC
,”
Energy Proc.
,
4
, pp.
1214
1221
.10.1016/j.egypro.2011.01.176
4.
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
,
1984
, “
A Review of Italian Activity in the Field of Organic Rankine Cycles
,” VDI Berichte—Proceedings of the International VDI Seminar, Vol.
539
,
VDI-Verlag
,
Dusseldorf, Germany
, pp.
465
482
.
5.
Saleh
,
B.
,
Koglbauer
,
G.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2007
, “
Working Fluids for Low-Temperature Organic Rankine Cycles
,”
Energy
,
32
, pp.
1210
1221
.10.1016/j.energy.2006.07.001
6.
Hettiarachchia
,
H. D. M.
,
Golubovica
,
M.
,
Woreka
,
W. M.
, and
Ikegamib
,
Y.
,
2007
, “
Optimum Design Criteria for an Organic Rankine Cycle Using Low-Temperature Geothermal Heat Sources
,”
Energy
,
32
, pp.
1698
1706
.10.1016/j.energy.2007.01.005
7.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery
,”
Energy Convers. Manage.
,
50
, pp.
576
582
.10.1016/j.enconman.2008.10.018
8.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
, pp.
2468
2476
.10.1016/j.applthermaleng.2008.12.025
9.
Colonna
,
P.
,
1991
, “
Fluidi Silossanici per Cicli di Potenza Spaziali (Siloxane Fluids for Space Power Cycles)
,” M.S. thesis, Politecnico di Milano, P. za Leonardo da Vinci, Milano, Italy.
10.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.10.2514/1.29718
11.
Turboden
,
2012
, “
The Company and the Geothermal Applications
,” www.turboden.eu/en/public/downloads/11-COM.P-5-rev.5_GEOTERMIA_ENG_56654.pdf
12.
Schuster
,
A.
,
Karellas
,
S.
, and
Aumann
,
R.
,
2010
, “
Efficiency Optimization Potential in Supercritical Organic Rankine Cycles
,”
Energy
,
35
, pp.
1033
1039
.10.1016/j.energy.2009.06.019
13.
Colonna
,
P.
,
1996
, “
Fluidi di Lavoro Multi Componenti per Cicli Termodinamici di Potenza (Multicomponent Working Fluids for Power Cycles)
,” Ph.D. thesis, Politecnico di Milano, Italy.
14.
Angelino
,
G.
, and
Colonna
,
P.
,
1998
, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
,
23
(
6
), pp.
449
463
.10.1016/S0360-5442(98)00009-7
15.
Angelino
,
G.
, and
Colonna
,
P.
,
2000
, “
Organic Rankine Cycles (ORCs) for Energy Recovery From Molten Carbonate Fuel Cells
,” Proceedings of the 35th Intersociety Energy Conversion Engineering Conference (
IECEC
), Las Vegas, NV, July 24–28, Paper No. 2000-3052.10.1109/IECEC.2000.870957
16.
Angelino
,
G.
, and
Colonna
,
P.
,
2000
, “
Air Cooled Siloxane Bottoming Cycle for Molten Carbonate Fuel Cells
,”
Proceedings of the Fuel Cell Seminar
,
Portland
,
OR
, October 30–November 2, pp.
667
670
.
17.
Heberle
,
F.
,
Preissinger
,
M.
, and
Brüggeman
,
D.
,
2012
, “
Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles for Low-Enthalpy Geothermal Resources
,”
Renewable Energy
,
37
, pp.
364
370
.10.1016/j.renene.2011.06.044
18.
Wang
,
X.
, and
Zhao
,
L.
,
2009
, “
Analysis of Zeotropic Mixtures Used in Low-Temperature Solar Rankine Cycles for Power Generation
,”
Sol. Energy
,
83
, pp.
605
613
.10.1016/j.solener.2008.10.006
19.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
A Supercritical Rankine Cycle Using Zeotropic Mixture Working Fluids for the Conversion of Low-Grade Heat Into Power
,”
Energy
,
36
, pp.
549
555
.10.1016/j.energy.2010.10.006
20.
van der Stelt
,
T. P.
,
Woudstra
,
N.
, and
Colonna
,
P.
,
2012
,
Cycle-Tempo: A Program for Thermodynamic Modeling and Optimization of Energy Conversion Systems, Version 5.0
, http://www.Cycle-Tempo.nl
21.
Colonna
,
P.
,
van der Stelt
,
T.
, and
Guardone
,
A.
,
2012
,
FluidProp: A Program for the Estimation of Thermophysical Properties of Fluids, Version 2.4
, www.FluidProp.com
22.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
,
2002
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0
,” National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, MD.
23.
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
2004
, “
Equations of State for Mixtures of R-32, R-125, R-134a, R-143a, and R-152a
,”
J. Phys. Chem. Ref. Data
,
33
(
2
), pp.
593
620
.10.1063/1.1649997
24.
Gross
,
J.
, and
Sadowski
,
G.
,
2001
, “
Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules
,”
Ind. Eng. Chem. Res.
,
40
, pp.
1244
1260
.10.1021/ie0003887
25.
Nannan
,
N. R.
,
van der Stelt
,
T. P.
,
Colonna
,
P.
, and
Bardow
,
A.
,
2012
, “
Modeling the Thermodynamic Properties of the selexolTM Solvent Using PC-SAFT
,” unpublished.
26.
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
2009
, ASHRAE Handbook—Fundamentals,
ASHRAE
,
Atlanta, GA
.
27.
Solomon
,
S.
,
Qin
,
D.
,
Manning
,
M.
,
Chen
,
Z.
,
Marquis
,
M.
,
Averyt
,
K.
,
Tignor
,
M.
,
Miller
,
H.
, eds.,
2007
,
Climate Change 2007: The Physical Science Basis
,
Cambridge University Press
,
Cambridge, UK
.
28.
IPCC, Contribution of Working Group I
,
2001
,
Climate Change 2001: The Scientific Basis
,
Cambridge University Press
,
Cambridge, UK
.
29.
Calm
,
J.
, and
Hourahan
,
G. C.
,
2007
, “
Refrigerant Data Update
,”
Heat./Piping/Air Cond.
,
79
(
1
), pp.
50
64
.
30.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
29
, pp.
1809
1817
.10.1016/j.applthermaleng.2008.08.016
31.
Brasz
,
J. J.
,
2011
, “
Keynote Lecture: Low Temperature/Small Capacity ORC System Development
,”
Proceedings of the First International Seminar on ORC Power Systems
,
TU Delft, The Netherlands
, September 22–23.
32.
Bell
,
K. J.
, and
Ghaly
,
M.
,
1973
, “
An Approximate Generalized Design Method for Multicomponent/Partial Condenser
,”
AIChE Symp. Ser.
,
69
, pp.
72
79
.
33.
Sinnott
,
R.
,
2005
,
Coulson and Richardson's Chemical Engineering
, 4th ed., Vol.
6
.
Elsevier Butterworth–Heinemann
,
Amsterdam
.
34.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drop of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
, p.
1429
1435
.10.1021/ie50324a027
35.
Taborek
,
J.
,
1983
,
Shell-and-Tube Heat Exchangers: Single-Phase Flow, Heat Exchanger Design Handbook
,
Hemisphere
,
New York
, Chap. 3.3.
36.
Kern
,
D. Q.
,
1950
,
Process Heat Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.