This paper presents the results of an experimental investigation on the characteristics of methane–coal-dust mixture explosion and its mitigation by ultra-fine water mist. Four E12-1-K-type fast response thermocouples, two printed circuit board (PCB) piezotronic pressure transducers were used to obtain the temperature and pressure history, while a GigaView high-speed camera was used to visualize the processes. Different methane concentrations, coal-dust concentrations, diameters of coal particles, and volumes of ultra-fine water mist were considered to investigate their effects on methane–coal-dust mixture explosion. The temperature of explosion flame, the maximum explosion overpressure, the maximum rate of overpressure rise, and the critical volume flux of ultra-fine water mist were experimentally determined. The results show that the characteristics of the methane–coal-dust mixture explosion and the mitigating effectiveness by ultra-fine water mist are influenced by the methane concentration, the coal-dust concentration, the coal-dust diameter and the applied volume flux of ultra-fine water mist. For example, both the maximum explosion overpressure and rate of overpressure rise increased with increasing of coal-dust concentrations and methane concentrations. All of the test cases indicate that ultra-fine water mist can mitigate the mixture explosion and suppress the flame propagation efficiently from the images recorded by the high-speed video camera.

References

1.
Giby
,
J.
, and CSB Hazard Investigation Team, 2007, “
Combustible Dusts: A Serious Industrial Hazard
,”
J. Hazard. Mater.
,
142
(
3
), pp.
589
591
.
2.
Ferrara
,
G.
,
Di Benedetto
,
A.
,
Salzano
,
E.
, and
Russo
,
G.
, 2006, “
CFD Analysis of Gas Explosions Vented Through Relief Pipes
,”
J. Hazard. Mater.
,
137
(
2
), pp.
654
665
.
3.
Proust
,
Ch.
, 2006, “
A Few Fundamental Aspects About Ignition and Fame Propagation in Dust Clouds
,”
J. Loss Prev. Process Ind.
,
19
(
2–3
), pp.
104
120
.
4.
Sapko
,
M. J.
,
Cashdollar
,
K. L.
, and
Green
,
G. M.
, 2007, “
Coal Dust Particle Size Survey of US Mines
,”
J. Loss Prev. Process Ind.
,
20
, pp.
616
620
.
5.
Pu
,
Y. K.
,
Jia
,
F.
,
Wang
,
S. F.
, and
Skjold
,
T.
, 2007, “
Determination of the Maximum Effective Burning Velocity of Dust–Air Mixtures in Constant Volume Combustion
,”
J. Loss Prev. Process Ind.
,
20
(
4–6
), pp.
462
469
.
6.
Blair
,
A. S.
, 2007, “
Dust Explosion Incidents and Regulations in the United States
,”
J. Loss Prev. Process Ind.
,
20
(
4–6
), pp.
523
529
.
7.
Pilao
,
R.
,
Ramalho
,
E.
, and
Pinho
,
C.
, 2006, “
Explosibility of Cork Dust in Methane/Air Mixtures
,”
J. Loss Prev. Process Ind.
,
19
(
1
), pp.
17
23
.
8.
Gang
,
L.
,
Chunmiao
,
Y.
,
Peihong
,
Z.
, and
Baozhi
,
C.
, 2008, “
Experiment-Based Fre and Explosion Risk Analysis for Powdered Magnesium Production Methods
,”
J. Loss Prev. Process Ind.
,
21
(
4
), pp.
461
465
.
9.
Lebecki
,
K.
,
Cybulski
,
K.
,
Sliz
,
J.
,
Dyduch
,
Z.
, and
Wolafski
,
P.
, 1995, “
Large Scale Grain Dust Explosions-Research in Poland
,”
Shock Waves
,
5
(
1–2
), pp.
109
114
.
10.
Eckhoff
,
R. K.
, 2009, “
Understanding Dust Explosions. The Role of Powder Science and Technology
,”
J. Loss Prev. Process Ind.
,
22
(
1
), pp.
105
116
.
11.
Amyotte
,
P. R.
,
Pegg
,
M. J.
, and
Khan
,
F. I.
, 2009, “
Application of Inherent Safety Principles to Dust Explosion Prevention and Mitigation
,”
Process Saf. Environ. Prot.
,
87
(
1
), pp.
35
39
.
12.
Silvestrini
,
M.
,
Genova
,
B.
,
Parisi
,
G.
, and
Trujillo
,
F. J. L.
, 2008, “
Correlations for Fame Speed and Explosion Overpressure of Dust Clouds Inside Industrial Enclosures
,”
J. Loss Prev. Process Ind.
,
21
(
4
), pp.
374
392
.
13.
Eckhoff
,
R. K.
, 2005, “
Current Status and Expected Future Trends in Dust Explosion Research
,”
J. Loss Prev. Process Ind.
,
18
(
4–6
), pp.
225
237
.
14.
Skjold
,
T.
,
Arntzen
,
B. J.
,
Hansen
,
O. R.
,
Storvik
,
I. E.
, and
Eckhoff
,
R. K.
, 2006, “
Simulation of Dust Explosions in Complex Geometries With Experimental Input from Standardized Tests
,”
J. Loss Prev. Process Ind.
,
19
(
2–3
), pp.
210
217
.
15.
Zhihua
,
C.
,
Baochun
,
F.
, and
Xiaohai
,
J.
, 2006, “
Suppression Effects of Powder Suppressants on the Explosions of Oxyhydrogen Gas
,”
J. Loss Prev. Process Ind.
,
19
(
6
), pp.
648
655
.
16.
Thomas
,
G. O.
, 2000, “
On the Conditions Required for Explosion Mitigation by Water Sprays
,”
Trans. IChemE, Part C
,
78
, pp.
339
354
.
17.
Kenneth
,
L. C.
, 1996, “
Coal Dust Explosibility
,”
J. Loss Prev. Process Ind.
,
9
(
1
), pp.
65
76
.
18.
Proust
,
Ch.
, 2006, “
A Few Fundamental Aspects about Ignition and Flame Propagation in Dust Clouds
,”
J. Loss Prev. Process Ind.
,
19
(
2–3
), pp.
104
120
.
19.
Oleszczak
,
P.
, and
Klemens
,
R.
, 2006, “
Mathematical Modelling of Dust–Air Mixture Explosion Suppression
,”
J. Loss Prev. Process Ind.
,
19
(
2–3
), pp.
187
193
.
20.
Downie
,
B.
,
Polymeropoulos
,
C.
, and
Gogos
,
G.
, 1995, “
Interaction of Water Mist with a Buoyant Methane Diffusion Flame
,”
Fire Saf. J.
,
24
, pp.
359
381
.
21.
Kim
,
M. B.
,
Jang
,
Y. J.
, and
Yoon
,
M. O.
, 1997, “
Extinction Limit of a Pool Fire With a Water Mist
,”
Fire Saf. J.
,
28
, pp.
295
306
.
22.
Ndubizu
,
C. C.
,
Ananth
,
R.
,
Tatem
,
P. A.
, and
Motevalli
,
V.
, 1998, “
On Water Mist Fire Suppression Mechanisms in a Gaseous Diffusion Flame
,”
Fire Saf. J.
,
31
, pp.
253
276
.
23.
Prasad
,
K.
,
Li
,
C.
, and
Kailasanath
,
K.
, 1998, “
Optimizing Water-Mist Injection Characteristics for Suppression of Coflow Diffusion Flames
,”
27th International Symposium on Combustion
,
The Combustion Institute, Pittsburgh
, pp.
2847
2855
.
24.
Huang
,
X.
,
Wang
,
X.
, and
Liao
,
G.
, 2011, “
Characterization of an Effervescent Atomization Water Mist Nozzle and Its Fire Suppression Tests
,”
Proc. Combust. Inst.
,
33
, pp.
2573
2579
.
25.
Huang
,
X.
,
Wang
,
X.
,
Jin
,
X.
,
Liao
,
G.
, and
Qin
,
J.
, 2007, “
Fire Protection of Heritage Structures: Use of a Portable Water Mist System Under High Altitude Conditions
,”
J. Fire Sci.
,
25
, pp.
217
239
.
26.
Wang
,
X.
,
Liao
,
G.
,
Yao
,
B.
,
Fan
,
W.
, and
Wu
,
X.
, 2001, “
Preliminary Study on the Interaction of Water Mist with Pool Fires
,”
J. Fire Sci.
,
19
, pp.
45
61
.
27.
Wang
,
X.
,
Liao
,
G.
,
Qin
,
J.
, and
Fan
,
W.
, 2002, “
Experimental Study on Effectiveness of Extinction of a Pool Fire With Water Mist
,”
J. Fire Sci.
,
20
(
4
), pp.
279
295
.
28.
Wang
,
X.
,
Liao
,
G.
,
Fan
,
W.
, and
Ritsu
,
D.
, 2004, “
Experimental Study on Cooling a Hot Solid Surface With Water Mist
,”
J. Fire Sci.
,
22
, pp.
355
366
.
29.
Douglas
,
A. S.
, and
Kailasanath
,
K.
, 2007, “
Numerical Simulations of the Mitigation of Unconfined Explosions Using Water-Mist
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2361
2369
.
30.
Van Wingerden
,
K.
, and
Wilkins
,
B.
, 1995, “
The Influence of Water Spray on Gas Explosions—Part 1: Water-Spray-Generated Turbulence
,”
J. Loss Prev. Process Ind.
,
8
(
2
), pp.
53
59
.
31.
Kim
,
A. K.
, and
Crampton
,
G. P.
, 2005, “
Water Mist System for Explosion Protection of an Armored Vehicle Crew Compartment
,”
NRCC-48179
,
National Research Council of Canada
.
32.
Rolf
,
K. E.
, 2009, “
Dust Explosion Prevention and Mitigation, Status and Developments in Basic Knowledge and in Practical Application
,”
Int. J. Chem. Eng.
,
12
, pp.
1
12
.
33.
Van Wingerden
,
K.
,
Wilkins
,
B.
,
Bakken
,
J.
, and
Pedersen
,
G. H.
, 1995, “
The Influence of Water Spray on Gas Explosions—Part 2: Mitigation
,”
J. Loss Prev. Process Ind.
,
8
(
2
), pp.
61
70
.
34.
Willauer
,
H. D.
,
Ananth
,
R.
,
Farley
,
J. P.
, and
Williams
,
F. W.
, 2009, “
Mitigation of TNT and Destex Explosion Effects Using Water Mist
,”
J. Hazard. Mater.
,
165
, pp.
1068
1073
.
You do not currently have access to this content.