Increasing concerns about climate change have encouraged interest in zero-CO2 emission hydrocarbon combustion techniques. In one approach, nitrogen is removed from the combustion air and replaced with another diluent, typically carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented and the exhaust stream can be separated into concentrated CO2 and water by a simple condensation process. The concentrated CO2 stream can then be sequestered or used for enhanced oil recovery. Burning fuels in an O2/CO2 diluent raises new combustion opportunities and challenges for both emissions and operability: this study focuses on the latter aspect. CH4/O2/CO2 flames have slower chemical kinetics than methane-air flames and as such, flame stability is more problematic as they are easier to blow off. This issue was investigated experimentally by characterizing the stability boundaries of a swirl stabilized combustor. Near stoichiometric CO2 and N2 diluted methane/oxygen flames were considered and compared with lean methane/air flames. Numerical modeling of chemical kinetics was also performed to analyze the dependence of laminar flame speeds and extinction strain rates upon dilution by different species and to develop correlations for blowoff boundaries. Finally, blowoff trends at high pressure were extrapolated from atmospheric pressure data to simulate conditions closer to those of gas turbines.

1.
Metz
,
B.
, 2005,
IPCC Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
,
New York
.
2.
Heddle
,
G.
,
Herzog
,
H.
, and
Klett
,
M.
, 2003, “
The Economics of CO2 Storage
,” Laboratory for Energy and the Environment, MIT, Cambridge, MA.
3.
Gabbrielli
,
R.
, and
Singh
,
R.
, 2003, “
Thermodynamic Performance Analysis of New Gas Turbine Combined Cycles With No Emissions of Carbon Dioxide
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
4
), pp.
940
946
.
4.
Sanz
,
W.
,
Jericha
,
H.
,
Bauer
,
B.
, and
Göttlich
,
E.
, 2008, “
Qualitative and Quantitative Comparison of Two Promising Oxy-Fuel Power Cycles for CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
3
), p.
031702
.
5.
Mathieu
,
P.
, and
Nihart
,
R.
, 1999, “
Zero-Emission MATIANT Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
(
1
), pp.
116
120
.
6.
Pronske
,
K.
,
Trowsdale
,
L.
,
Macadam
,
S.
,
Viteri
,
F.
,
Bevc
,
F.
, and
Horazak
,
D.
, 2006, “
An Overview of Turbine and Combustor Development for Coal-Based Oxy-Syngas Systems
,”
ASME Turbo Expo: Power for Land, Sea, and Air
, Barcelona, Spain, pp.
817
828
.
7.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
, 2005, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
0360-1285,
31
(
4
), pp.
283
307
.
8.
Bilger
,
R.
, and
Wu
,
Z.
, 2009, “
Carbon Capture for Automobiles Using Internal Combustion Rankine Cycle Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
3
), p.
034502
.
9.
Kee
,
R.
,
Rupley
,
F.
,
Miller
,
J.
,
Coltrin
,
M.
,
Grcar
,
J.
,
Meeks
,
E.
,
Moffat
,
H.
,
Lutz
,
A.
,
Dixon-Lewis
,
G.
, and
Smooke
,
M.
, 2007, “
Chemkin Release 4.1.1
,” Reaction Design, San Diego.
10.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
, 2007, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
0010-2180,
151
(
1–2
), pp.
104
119
.
11.
Yossefi
,
D.
,
Ashcroft
,
S. J.
,
Hacohen
,
J.
,
Belmont
,
M. R.
, and
Thorpe
,
I.
, 1995, “
Combustion of Methane and Ethane With Co2 Replacing N2 as a Diluent
,”
Fuel
0016-2361,
74
(
7
), pp.
1061
1071
.
12.
Yossefi
,
D.
,
Belmont
,
M. R.
,
Makell
,
S. J.
, and
Ben-Dor
,
G.
, 1998, “
Stimulation and Implementation of Laminar Flow Reactors for the Study of Combustion System of Ethane, Methane, and Deborane
,”
Fuel
0016-2361,
77
(
3
), pp.
173
181
.
13.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
, 2003, “
The Chemical Effect of CO2 Replacement on N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
0010-2180,
133
(
4
), pp.
495
497
.
14.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
, and
Wooldridge
,
M. S.
, 2007, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide for Syngas Turbine Application
,”
Proc. Combust. Inst.
1540-7489,
31
(
2
), pp.
3147
3154
.
15.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
, 2005, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
1540-7489,
30
(
1
), pp.
1283
1292
.
16.
Ju
,
Y.
,
Masuya
,
G.
, and
Ronney
,
P.
, 1998, “
Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames
,”
Proc. Combust. Inst.
1540-7489,
2
(
27
), pp.
2619
2626
.
17.
Guo
,
H.
,
Ju
,
Y.
,
Maruta
,
K.
,
Niioka
,
T.
, and
Liu
,
F.
, 1998, “
Numerical Investigation of CH4/CO2/Air and CH4/CO2/O2 Counterflow Premixed Flames With Radiation Reabsorption
,”
Combust. Sci. Technol.
0010-2202,
135
(
1–6
), pp.
49
64
.
18.
Ruan
,
J.
,
Kobayashi
,
H.
,
Niioka
,
T.
, and
Ju
,
Y.
, 2001, “
Combined Effects of Nongray Radiation and Pressure on Premixed CH4/O2/CO2 Flames
,”
Combust. Flame
0010-2180,
124
(
1–2
), pp.
225
230
.
19.
Chen
,
Z.
,
Qin
,
X.
,
Xu
,
B.
,
Ju
,
Y.
, and
Liu
,
F.
, 2007, “
Studies of Radiation Absorption on Flame Speed and Flammability Limit on CO2 Diluted Methane Flames at Elevated Pressures
,”
Proc. Combust. Inst.
1540-7489,
31
(
2
), pp.
2693
2700
.
20.
Maruta
,
K.
,
Abe
,
K.
,
Hasegawa
,
S.
,
Maruyama
,
S.
, and
Sato
,
J.
, 2007, “
Extinction Characteristics of CH4/CO2 Versus O2/CO2 Counterflow Non-Premixed Flames at Elevated Pressures up to 0.7 MPa
,”
Proc. Combust. Inst.
1540-7489,
31
(
1
), pp.
1223
1230
.
21.
Chorpening
,
B.
,
Casleton
,
K.
,
Richards
,
G.
,
Woike
,
M.
, and
Willis
,
B.
, 2003, “
Stoichiometric Oxy-Fuel Combustion for Power Cycles With CO2 Sequestration
,”
Third Joint Meeting of the US Sections of the Combustion Institute
, Chicago, IL.
22.
Chorpening
,
B.
,
Richards
,
G. A.
,
Casleton
,
K. H.
,
Woike
,
M.
,
Willis
,
B.
, and
Hoffman
,
L.
, 2005, “
Demonstration of a Reheat Combustor for Power Production With CO2 Sequestration
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
(
4
), pp.
740
747
.
23.
Richards
,
G.
,
Casleton
,
K.
, and
Chorpening
,
B.
, 2005, “
CO2 and H2O Diluted Oxy-Fuel Combustion for Zero-Emission Power
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
219
(
2
), pp.
121
126
.
24.
Lallemant
,
N.
,
Dugue
,
J.
, and
Weber
,
R.
, 1997, “
Analysis of the Experimental Data Collected During the Oxyflam-1 and Oxyflam-2 Experiments
,” IFRF Doc. No. F85/y/4.
25.
Kim
,
G.
,
Kim
,
Y.
, and
Joo
,
Y.
, 2009, “
Conditional Moment Closure for Modeling Combustion Processes and Structure of Oxy-Natural Gas Flame
,”
Energy Fuels
0887-0624,
23
(
9
), pp.
4370
4377
.
26.
Andersson
,
K.
, and
Johnsoon
,
F.
, 2007, “
Flame and Radiation Characteristics of Gas-Fired O2/CO2 Combustion
,”
Fuel
0016-2361,
86
(
5–6
), pp.
656
668
.
27.
Wicksall
,
D.
, and
Agrawal
,
A.
, 2001, “
Effects of Fuel Composition on Flammability Limit of a Lean, Premixed Combustor
,”
ASME Turbo Expo
, New Orleans, LA.
28.
Pipitone
,
G.
, and
Bolland
,
O.
, 2009, “
Power Generation With CO2 Capture: Technology for CO2 Purification
,”
Int. J. Greenh. Gas Control
,
3
(
5
), pp.
528
534
.
29.
Williams
,
T. C.
,
Shaddix
,
C. R.
, and
Schefer
,
R. W.
, 2008, “
Effect of Syngas Composition and CO2-Diluted Oxygen on Performance of a Premixed Swirl-Stabilized Combustor
,”
Combust. Sci. Technol.
0010-2202,
180
(
1
), pp.
64
88
.
30.
Zhang
,
Q.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
, 2007, “
Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures Upon Lean Blowout
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
3
), pp.
688
694
.
31.
Lieuwen
,
T.
,
Mcdonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
, 2008, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
1
), p.
011506
.
32.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
, 2009, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
0360-1285,
35
(
1
), pp.
98
120
.
33.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http//www.berkeley.edu/gri-mech/http//www.berkeley.edu/gri-mech/
34.
Halter
,
F.
,
Foucher
,
F.
,
Landry
,
L.
, and
Mounaim-Rousselle
,
C.
, 2009, “
Effect of Dilution by Nitrogen and/or Carbon Dioxide on Methane and Iso-Octane Air Flames
,”
Combust. Sci. Technol.
0010-2202,
181
(
6
), pp.
813
827
.
35.
Le Cong
,
T.
,
Dagaut
,
P.
, and
Dayma
,
G.
, 2008, “
Oxidation of Natural Gas, Natural Gas/Syngas Mixtures, and Effect of Burnt Gas Recirculation: Experimental and Detailed Kinetic Modeling
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
4
), p.
041502
.
36.
Turns
,
S. R.
, 2000,
An Introduction to Combustion
,
McGraw-Hill
,
New York
.
37.
Law
,
C. K.
,
Egolfopoulos
,
F. N.
, and
Zhu
,
D. L.
, 1988, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, Co2)—Air Mixtures as a Function of Stoichiometry, Pressure, and Flame Temperature
,”
22nd International Symposium on Combustion
, pp.
1537
1545
.
38.
Hoffmann
,
S.
,
Habisreuther
,
P.
, and
Lenze
,
B.
, 1994, “
Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames
,”
Chem. Eng. Process.
0255-2701,
33
(
5
), pp.
393
400
.
39.
Glassman
, 1996,
Combustion
,
Academic
,
San Diego, CA
.
40.
Plee
,
S. L.
, and
Mellor
,
A. M.
, 1979, “
Characteristic Time Correlation for Lean Blow Off of Bluff-Body Stabilized Flames
,”
Combust. Flame
0010-2180,
35
, pp.
61
80
.
41.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
, 2007, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
1540-7489,
31
(
2
), pp.
3173
3180
.
42.
Zukoski
,
E.
, and
Marble
,
F.
, 1956, “
Experiments Concerning the Mechanism of Flame Blowoff From Bluff Bodies
,”
Proceedings of the Gas Dynamics Symposium on Aerothermochemistry
, pp.
205
210
.
43.
Spalding
,
D. B.
, 1953, “
Theoretical Aspects of Flame Stabilization
,”
Aircr. Eng.
0002-2667,
25
(
9
), pp.
264
276
.
44.
Longwell
,
J. P.
, 1952, “
Stabilization by Bluff Bodies and Turbulent Flames in Ducts
,”
Proc. Combust. Inst.
1540-7489,
4
, pp.
90
99
.
45.
Longwell
,
J. P.
, 1948, “
Flame Stabilization by Baffles in a High Velocity Gas Stream
,”
Proc. Combust. Inst.
1540-7489,
3
, pp.
40
44
.
46.
Williams
,
T. C.
,
Schefer
,
R. W.
,
Oefelein
,
J. C.
, and
Shaddix
,
C. R.
, 2007, “
Idealized Gas Turbine Combustor for Performance Research and Validation of Large Eddy Simulations
,”
Rev. Sci. Instrum.
0034-6748,
78
(
3
), p.
035114
.
You do not currently have access to this content.