The response of turbulent premixed flames to inlet velocity fluctuations is studied experimentally in a lean premixed, swirl-stabilized, gas turbine combustor. Overall chemiluminescence intensity is used as a measure of the fluctuations in the flame’s global heat release rate, and hot wire anemometry is used to measure the inlet velocity fluctuations. Tests are conducted over a range of mean inlet velocities, equivalence ratios, and velocity fluctuation frequencies, while the normalized inlet velocity fluctuation (V/Vmean) is fixed at 5% to ensure linear flame response over the employed modulation frequency range. The measurements are used to calculate a flame transfer function relating the velocity fluctuation to the heat release fluctuation as a function of the velocity fluctuation frequency. At low frequency, the gain of the flame transfer function increases with increasing frequency to a peak value greater than 1. As the frequency is further increased, the gain decreases to a minimum value, followed by a second smaller peak. The frequencies at which the gain is minimum and achieves its second peak are found to depend on the convection time scale and the flame’s characteristic length scale. Phase-synchronized CH chemiluminescence imaging is used to characterize the flame’s response to inlet velocity fluctuations. The observed flame response can be explained in terms of the interaction of two flame perturbation mechanisms, one originating at flame-anchoring point and propagating along the flame front and the other from vorticity field generated in the outer shear layer in the annular mixing section. An analysis of the phase-synchronized flame images show that when both perturbations arrive at the flame at the same time (or phase), they constructively interfere, producing the second peak observed in the gain curves. When the perturbations arrive at the flame 180 degrees out-of-phase, they destructively interfere, producing the observed minimum in the gain curve.

1.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1
28
.
2.
Lieuwen
,
T.
, and
Yang
,
V.
, 2005, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,”
Progress in Astronautics and Aeronautics
, Vol.
210
,
AIAA
,
Reston, VA
.
3.
Dowling
,
A. P.
, 1999, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
0022-1120,
394
, pp.
51
72
.
4.
Fleifil
,
M.
,
Annaswamy
,
A. M.
,
Ghoneim
,
Z. A.
, and
Ghoniem
,
A. F.
, 1996, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
0010-2180,
106
, pp.
487
510
.
5.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2002, “
Modeling Tools for the Prediction of Premixed Flame Transfer Functions
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
107
113
.
6.
Lieuwen
,
T.
, 2003, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
765
781
.
7.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
0010-2180,
134
, pp.
21
34
.
8.
Sengissen
,
A. X.
,
Van Kampen
,
J. F.
,
Huls
,
R. A.
,
Stoffels
,
G. G. M.
,
Kok
,
J. B. W.
, and
Poinsot
,
T. J.
, 2007, “
LES and Experimental Studies of Cold and Reacting Flow in a Swirled Partially Premixed Burner With and Without Fuel Modulation
,”
Combust. Flame
0010-2180,
150
, pp.
40
53
.
9.
Külsheimer
,
C.
, and
Büchner
,
H.
, 2002, “
Combustion Dynamics of Turbulent Swirling Flames
,”
Combust. Flame
0010-2180,
131
, pp.
70
84
.
10.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2005, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1717
1724
.
11.
Balachandran
,
R.
,
Ayoola
,
B. O.
,
Kaminski
,
C. F.
,
Dowling
,
A. P.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Velocity Oscillations
,”
Combust. Flame
0010-2180,
143
, pp.
37
55
.
12.
Armitage
,
C. A.
,
Balachandran
,
R.
,
Mastorakos
,
E.
, and
Cant
,
R. S.
, 2006, “
Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
146
, pp.
419
436
.
13.
Bellows
,
B. D.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
, 2006, “
Forced Response of a Swirling, Premixed Flame to Flow Disturbances
,”
J. Propul. Power
0748-4658,
22
(
5
), pp.
1075
1084
.
14.
Birbaud
,
A. L.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
, 2007, “
Dynamics of Confined Premixed Flames Submitted to Upstream Acoustic Modulations
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1257
1265
.
15.
Polifke
,
W.
, and
Lawn
,
C.
, 2007, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
0010-2180,
151
, pp.
437
451
.
16.
Preetham
,
S. H.
, and
Lieuwen
,
T.
, 2008, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
0748-4658,
24
(
6
), pp.
1390
1402
.
17.
Chaudhuri
,
S.
, and
Cetegen
,
B. M.
, 2009, “
Response Dynamics of Bluff-body Stabilized Conical Premixed Turbulent Flames With Spatial Mixture Gradients
,”
Combust. Flame
0010-2180,
156
, pp.
706
720
.
18.
Kim
,
D.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2010, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
132
, p.
021502
.
19.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
, 2010, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
132
, p.
041502
.
20.
Dowling
,
A. P.
, and
Stow
,
S. R.
, 2003, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
, pp.
751
764
.
21.
Bellucci
,
V.
,
Schuermans
,
B.
,
Nowak
,
D.
,
Flohr
,
P.
, and
Paschereit
,
C. O.
, 2005, “
Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With Acoustic Dampers
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
372
379
.
22.
Lieuwen
,
T.
, 2005, “
Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
1725
1732
.
23.
Preetham
,
S. H.
, and
Lieuwen
,
T. C.
, 2007, “
Response of Turbulent Premixed Flames to Harmonic Acoustic Forcing
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
1427
1434
.
24.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
0022-1120,
615
, pp.
139
167
.
25.
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
735
750
.
26.
Dasch
,
C. J.
, 1992, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
0003-6935,
31
(
8
), pp.
1146
1152
.
You do not currently have access to this content.