The melt droplets’ crust formation modeling, which is used in current fuel coolant interaction (FCI) codes, is rather basic. In the paper the development of the melt droplet heat transfer model, which enables the treatment of the material properties’ influence on the steam explosion, is presented. The model is complex enough to adequately predict the crust development during the melt droplets’ cooling in the premixing phase. At the same time the model is simple enough that it can be practically implemented into FCI codes and is thus being an optimal model for FCI applications. Fragmentation criteria are derived in order to take into account the influence of the formed crust on the steam explosion process. The derived criteria are based on experimental results and the thin plate approximation. To enable the use of the model and the fragmentation criteria in FCI codes with Eulerian formulation, adequate transport equations for model parameters are given.

1.
Sehgal
,
B. R.
, 2006, “
Stabilization and Termination of Severe Accident in LWRs
,”
Nucl. Eng. Des.
0029-5493,
236
, pp.
1941
1952
.
2.
Cizelj
,
L.
,
Leskovar
,
M.
, and
Končar
,
B.
, 2006, “
Vulnerability of a Partially Flooded PWR Reactor Cavity to a Steam Explosion
,”
Nucl. Eng. Des.
0029-5493,
236
, pp.
1617
1627
.
3.
Leskovar
,
M.
, 2009, “
Pressure Load Estimation During Ex-Vessel Steam Explosion
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
3
), p.
032901
.
4.
Huhtiniemi
,
I.
,
Magallon
,
D.
, and
Hohmann
,
H.
, 1999, “
Results of Recent KROTOS FCI Tests: Alumina Versus Corium Melts
,”
Nucl. Eng. Des.
0029-5493,
189
, pp.
379
389
.
5.
Leskovar
,
M.
,
Meignen
,
R.
,
Brayer
,
C.
,
Bürger
,
M.
, and
Buck
,
M.
, 2007, “
Material Influence on Steam Explosion Efficiency: State of Understanding and Modelling Capabilities
,” The 2nd European Review Meeting on Severe Accident Research (ERMSAR-2007), Jun. 12–14,
FZK
,
Karlsruhe, Germany
.
6.
Meignen
,
R.
, and
Picchi
,
S.
, 2005, “
MC3D Version 3.5: User’s Guide
,” IRSN, Report No. NT/DSR/SAGR/05-84.
7.
Dinh
,
T. N.
, 2007, “
Material Property Effect in Steam Explosion Energetics: Revised
,”
The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12)
, Pittsburgh, PA, Sept. 30–Oct. 4, pp.
1
19
, Log No. 150.
8.
Dombrovsky
,
L. A.
, and
Dinh
,
T. -N.
, 2008, “
The Effect of Thermal Radiation on the Solidification Dynamics of Metal Oxide Melt Droplets
,”
Nucl. Eng. Des.
0029-5493,
238
, pp.
1421
1429
.
9.
Meignen
,
R.
,
Magallon
,
D.
,
Bang
,
K. H.
,
Berthoud
,
G.
,
Basu
,
S.
,
Bürger
,
M.
,
Buck
,
M.
,
Corradini
,
M. L.
,
Jacobs
,
H.
,
Melikhov
,
O.
,
Naitoh
,
M.
,
Moriyama
,
K.
,
Sairanen
,
R.
,
Song
,
J. H.
,
Suh
,
N.
, and
Theofanous
,
T. G.
, 2005,
Comparative Review of FCI Computer Models Used in the OECD-SERENA Program
,”
Proceedings of the ICAPP 2005
, Seoul, South Korea, May, pp.
15
19
.
10.
Uršič
,
M.
, and
Leskovar
,
M.
, 2008, “
Modelling of Material Properties Influence on Steam Explosion Energetics
,”
Proceedings of the International Conference Nuclear Energy for New Europe
, Portorož, Slovenia, Sept. 8–11.
11.
Bürger
,
M.
,
Cho
,
S. H.
,
Kim
,
D. S.
,
Carachalios
,
C.
,
Müller
,
K.
, and
Fröhlich
,
G.
, 1985, “
Effect of Solid Crust on the Hydrodynamic Fragmentation of Melt Droplets
,” Institut für Kernenergetik und Energiesysteme der Universitat Stuttgart, Report No. IKE 2 TF-74.
12.
Haraldsson
,
H. Ó.
,
Li
,
H. X.
,
Yang
,
Z. L.
,
Dinh
,
T. N.
, and
Sehgal
,
B. R.
, 2001, “
Effect of Solidification on Drop Fragmentation in Liquid-Liquid Media
,”
Heat Mass Transfer
0947-7411,
37
, pp.
417
426
.
13.
Yang
,
J. W.
, and
Bankoff
,
S. G.
, 1987, “
Solidification Effects on the Fragmentation of Molten Metal Drops Behind a Pressure Shock Wave
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
226
231
.
14.
Kolev
,
N. I.
, 2002,
Multiphase Flow Dynamics 2; Mechanical and Thermal Interactions
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.