Environment and energy are driven forces of human survival and development. Nowadays the use of primary energy comprises mostly mineral fuels, which have limited reserves and whose utilization may cause serious environmental impacts. Attention has been paid to discover clean and renewable resources such as syngas, which is an important renewable source of energy and is environment friendly. The use of syngas from biomass gasification process as fuel in regenerative gas turbine causes an increase in turbine exhaust mass flow and a change in the gas composition due to a low heat value. As a result, the regenerator changes its size, thermal characteristics, weight, and cost compared with the use of natural gas as fuel. The aim of this work is to assess the thermal performance, the size, and the cost of the recuperator of a 600 kW regenerative gas turbine engine when designed for syngas and natural gas. Two different types of surfaces, cross-corrugated and undulated-corrugated, are used for analysis. The results are shown, comparing heat-transfer coefficient, effectiveness, pressure loss, size, and cost for syngas and natural gas.

1.
Traverso
,
A.
, and
Massardo
,
A. F.
, 2005, “
Optimal Design of Compact Recuperators for Microturbine Application
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
2054
2071
.
2.
McDonald
,
C. F.
, 2000, “
Low-Cost Compact Primary Surface Recuperator Concept for Microturbines
,”
Appl. Therm. Eng.
1359-4311,
20
, pp.
471
497
.
3.
Utriainen
,
E.
, and
Sundén
,
B.
, 2002, “
Evaluation of the Cross Corrugated and Some Other Candidate Heat Transfer Surfaces for Microturbine Recuperators
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
, pp.
550
560
.
4.
Savostin
,
A. F.
, and
Tikhonov
,
A. M.
, 1970, “
Investigation of the Characteristics of Plate-Type Heating Surfaces
,”
Teploenergetika (Moscow, Russ. Fed.)
0040-3636,
17
(
9
), pp.
75
78
.
5.
Stasiek
,
J. A.
, 1998, “
Experimental Studies of Heat Transfer and Fluid Flow Across Corrugated-Undulated Heat Exchanger Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
6–7
), pp.
899
914
.
6.
Ciofalo
,
M.
,
Collins
,
M. W.
, and
Stasiek
,
J. A.
, 1998, “
Flow and Heat Transfer Predictions in Flow Passages of Air Preheaters: Assessment of Alternative Modeling Approaches
,”
Computer Simulations in Compact Heat Exchangers
,
B.
Sundén
and
M.
Faghri
, eds.,
Computational Mechanics Publications
.
7.
Ciofalo
,
M.
, and
Stasiek
,
J. A.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages-II. Numerical Simulations
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
165
192
.
8.
Stasiek
,
J. A.
,
Collins
,
M. W.
,
Ciofalo
,
M.
, and
Chew
,
P. E.
, 1996, “
Investigation of Flow and Heat Transfer in Corrugated Passages-I. Experimental Results
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
1
), pp.
149
164
.
9.
Micheli
,
D.
,
Pediroda
,
V.
, and
Pieri
,
S.
, 2007, “
Multi-Objective Optimization of a Microturbine Compact Recuperator
,” ASME Paper No. GT2007-27636.
10.
Liang
,
H. X.
,
Xie
,
G. N.
,
Wang
,
Q. M.
,
Luo
,
L. Q.
, and
Feng
,
Z. P.
, 2006, “
Genetic Algorithm Optimization for Primary Surfaces Recuperator of Microturbine
,” ASME Paper No. GT2006-90366.
11.
Shah
,
R. K.
, 2005, “
Compact Heat Exchangers for Microturbines
,”
Micro Gas Turbines
, pp.
2
-1–2-
18
.
12.
McDonald
,
C. F.
, 2003, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
1359-4311,
23
, pp.
1463
1487
.
13.
Rakowski
,
J. M.
, and
Stinner
,
C. P.
, 2004, “
The Use and Performance of Oxidation and Creep-Resistant Stainless Steels in an Exhaust Gas Primary Surface Recuperator Application
,” ASME Paper No. GT2007-53917.
14.
Lara-Curzio
,
E.
,
Trejo
,
R.
,
More
,
K. L.
,
Maziasz
,
P. A.
, and
Pint
,
B. A.
, 2004, “
Screening and Evaluation of Materials for Microturbine Recuperators
,” ASME Paper No. GT2004-54254.
15.
Pint
,
B.
, 2005, “
The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys
,” ASME Paper No. GT2005-68495.
16.
Maziasz
,
P. J.
,
Shingledecker
,
J. P.
,
Pint
,
B. A.
,
Evans
,
N. D.
,
Yamamoto
,
Y.
,
More
,
K.
, and
Lara-Curzio
,
E.
, 2005, “
Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers
,” ASME Paper No. GT2005-68927.
17.
Pint
,
B. A.
,
More
,
R. L.
,
Trejo
,
R.
, and
Lara-Curzio
,
E.
, 2006, “
Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing
,” ASME Paper No. GT2006-90194.
18.
Maziasz
,
P. J.
,
Pint
,
B. A.
, and
Shingledecker
,
J. P.
, 2004, “
Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators
,” ASME Paper No. GT2004-54239.
19.
McDonald
,
C. F.
, 1997, “
Ceramic Heat Exchangers=The Key to High Efficiency in Very Small Gas Turbines
,” ASME Paper No. GT1997-463.
20.
Wilson
,
D. G.
, 2007, “
Investigation Into the Use of Ceramic-Honeycomb Rotary Regenerators for Solar Brayton Cycles
,” ASME Paper No. GT2007-27216.
21.
Karellas
,
S.
,
Karl
,
J.
, and
Kakaras
,
E.
, 2008, “
An Innovative Biomass Gasification Process and Its Coupling With Microturbine and Fuel Cell Systems
,”
Energy
0360-5442,
33
(
2
), pp.
284
291
.
22.
Williams
,
D. W.
, 2001, “
Microturbine Operation With Biogas From a Covered Dairy Manure Lagoon
,”
ASAE Meeting Presentation
, Paper No. 01-6154.
23.
Nascimento
,
M. A. R.
,
Osvaldo
,
J. V.
,
Lora
,
E. S.
,
Sierra
,
G. A.
,
Rodrigues
,
L. O.
,
Carvalho
,
H. M.
, and
Moura
,
N. R.
, 2008, “
Cycle Selection and Compressor Design of 600 kW Simple Cycle Gas Turbine Engine
,”
Proceedings of the TURBOEXPO 2008, ASME Turbo Expo 2008
, Berlin, Germany, Jun. 9–13.
You do not currently have access to this content.