The paper introduces a thermohydrodynamic (THD) model for prediction of gas foil bearing (GFB) performance. The model includes thermal energy transport in the gas film region and with cooling gas streams, inner or outer, as in typical rotor-GFBs systems. The analysis also accounts for material property changes and the bearing components’ expansion due to temperature increases and shaft centrifugal growth due to rotational speed. Gas inlet feed characteristics are thoroughly discussed in bearings whose top foil must detach, i.e., not allowing for subambient pressure. Thermal growths determine the actual bearing clearance needed for accurate prediction of GFB forced performance, static and dynamic. Model predictions are benchmarked against published measurements of (metal) temperatures in a GFB operating without a forced cooling gas flow. The tested foil bearing is proprietary; hence, its geometry and material properties are largely unknown. Predictions are obtained for an assumed bearing configuration, with bump-foil geometry and materials taken from prior art and best known practices. The predicted film peak temperature occurs just downstream of the maximum gas pressure. The film temperature is higher at the bearing middle plane than at the foil edges, as the test results also show. The journal speed, rather than the applied static load, influences more the increase in film temperature and with a larger thermal gradient toward the bearing sides. In addition, as in the tests conducted at a constant rotor speed and even for the lowest static load, the gas film temperature increases rapidly due to the absence of a forced cooling air that could carry away the recirculation gas flow and thermal energy drawn by the spinning rotor; predictions are in good agreement with the test data. A comparison of predicted static load parameters to those obtained from an isothermal condition shows the THD model producing a smaller journal eccentricity (larger minimum film thickness) and larger drag torque. An increase in gas temperature is tantamount to an increase in gas viscosity, hence, the noted effect in the foil bearing forced performance.

1.
DellaCorte
,
C.
, and
Bruckner
,
R. J.
, 2007, “
Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System
,” Report No. NASA/TM2007-214845.
2.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,” Report No. NASA/TM2000-209782.
3.
Heshmat
,
H.
, 1994, “
Advancements in the Performance of Aerodynamic Foil Journal Bearings: High Speed and Load Capacity
,”
ASME J. Tribol.
0742-4787,
116
, pp.
287
295
.
4.
Radil
,
K.
,
DellaCorte
,
C.
, and
Zeszotek
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
1040-2004,
50
, pp.
319
327
.
5.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
, 2002, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
45
, pp.
485
490
.
6.
Radil
,
K. C.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
470
479
.
7.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
508
516
.
8.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008,
“Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part I–Static Load Performance
,” ASME Paper No. GT2008-50567.
9.
Kim
,
T. H.
,
Breedlove
,
A. W.
, and
San Andrés
,
L.
, 2008, “
Characterization of Foil Bearing Structure for Increasing Shaft Temperatures: Part II–Dynamic Force Performance
,” ASME Paper No. GT2008-50570.
10.
Lee
,
Y. -B.
,
Jo
,
J. -H.
,
Park
,
D. -J.
,
Kim
,
C. -H.
, and
Rhim
,
Y. -C.
, 2006, “
Dynamic Characteristics of Bump Foils Considering With Thermal Effect in Air Foil Bearings
,” ASME Paper No. IJTC2006-12189.
11.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
, pp.
566
571
.
12.
Peng
,
Z. -C.
, and
Khonsari
,
M. M.
, 2006, “
A Thermohydrodynamic Analysis of Foil Journal Bearings
,”
ASME J. Tribol.
0742-4787,
128
, pp.
534
540
.
13.
Le Lez
,
S.
, 2007, “
Caracterisques Statiques Et Dynaniques Des Paliers A Feuilles
,” Ph.D. thesis, Universite De Poitiers, Poitiers, France.
14.
Feng
,
K.
, and
Kaneko
,
S.
, 2008, “
A Study of Thermohydrodynamic Features of Multiwound Foil Bearing Using Lobatto Point Quadrature
,” ASME Paper No. GT2008-50110.
15.
DellaCorte
,
C.
, 1997, “
A New Foil Air Bearing Test Rig for Use to 700°C
and 70,000 rpm,” Report No. NASA/TM1997-107405.
16.
Sim
,
K.
, and
Kim
,
D.
, 2008, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
3
), p.
032502
.
17.
Lubell
,
D.
,
DellaCorte
,
C.
and
Stanford
,
M.
, 2006, “
Test Evolution and Oil-Free Engine Experience of a High Temperature Foil Air Bearing Coating
,” ASME Paper No. GT2006-90572.
18.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2009, “
Effect of Side End Pressurization on the Dynamic Performance of Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
1
), p.
012501
.
19.
Black
,
H. F.
,
Allaire
,
P. E.
, and
Barrett
,
L. E.
, 1981, “
Inlet Flow Swirl in Short Turbulent Annular Seal Dynamics
,”
Proceedings of the Ninth International Conference in Fluid Sealing
,
BHRA Fluid Engineering
,
Leeuwenborst, The Netherlands
, pp.
141
152
.
20.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics–Phenomena, Modeling, & Analysis
,
Wiley
,
New York
, pp.
248
274
.
21.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2008, “
Heavily Loaded Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
(
1
), p.
012504
.
22.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
0301-679X,
42
(
1
), pp.
111
120
.
23.
Holman
,
J. P.
, 1990,
Heat Transfer
,
McGraw-Hill
,
New York
, pp.
245
247
.
24.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: Model and Predictions
,” Texas A&M University, College Station, TX, Technical Report No. TRC-B&C-2-08.
25.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2006, “
Limits for High Speed Operation of Gas Foil Bearings
,”
ASME J. Tribol.
0742-4787,
128
, pp.
670
673
.
26.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
, 1978, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,”
NASA
Report No. NASA CR-135368.
27.
White
,
F. M.
, 1994,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
28.
Kutz
,
M.
, 2005,
Mechanical Engineers’ Handbook: Materials and Mechanical Design
, Vol.
1
,
Wiley
,
New York
, Chap. 8.
29.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
, pp.
816
822
.
30.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
, pp.
80
83
.
31.
Pinkus
,
O.
, and
Sternlicht
,
B.
, 1961,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
, pp.
14
22
.
32.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2008, “
Rotordynamic Measurements on a High Temperature Rotor Supported on Gas Foil Bearings
,” Texas A&M University, College Station, TX, Technical Report No. TRC-B&C-3-08.
33.
Seghir-Ouali
,
S.
,
Saury
,
D.
,
Harmand
,
S.
,
Phillipart
,
O.
, and
Laloy
,
D.
, 2006, “
Convective Heat Transfer Inside a Rotating Cylinder With an Axial Air Flow
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
1166
1178
.
You do not currently have access to this content.