A swirling double concentric jet is commonly used for nonpremixed gas burner application for safety reasons and to improve the combustion performance. Fuel is generally spurted at the central jet while the annular coflowing air is swirled. They are normally separated by a blockage disk where the bluff-body effects further enhance the recirculation of hot gas at the reaction zone. This paper aims to experimentally investigate the behavior of flame and flow in a double concentric jet combustor when the fuel supply is acoustically driven. Laser-light sheet assisted Mie scattering method has been used to visualize the flow, while the flame lengths were measured by a conventional photography technique. The fluctuating velocity at the jet exit was measured by a two-component laser Doppler velocimeter. Flammability and stability at first fuel tube resonant frequency are reported and discussed. The evolution of flame profile with excitation level is presented and discussed, together with the reduction in flame length. The flame in the unforced reacting axisymmetric wake is classified into three characteristic modes, which are weak swirling flame, lifted flame, and transitional reattached flame. These terms reflect their primary features of flame appearances, and when the acoustic excitation is applied, the flame behaviors change with the excitation frequency and amplitude. Four additional characteristic modes are identified; e.g., at low excitation amplitudes, wrinkling flame with a blue annular film is observed because the excitation induces vortices in the central fuel jet and hence gives rise to the wrinkling of flame. The central jet vortices become larger with the increase in excitation amplitude and thus lead to a wider and shorter flame. If the excitation amplitude is increased above a certain value, the central jet vortices change the rotation direction and pacing with the annular jet vortices. These changes in the flow field induce large turbulent intensity and mixing and therefore make the flame looks blue and short. Further increase in the excitation amplitude would lift the flame because the flow field would be dramatically modified.

1.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
, 1984,
Swirl Flows
,
Abacus
,
Cambridge
, pp.
13
117
.
2.
Escudier
,
M. P.
, and
Keller
,
J. J.
, 1985, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
0001-1452,
23
, pp.
111
116
.
3.
Huang
,
R. F.
, and
Tsai
,
F. C.
, 2001, “
Observations of Swirling Flows Behind Circular Discs
,”
AIAA J.
0001-1452,
39
, pp.
1106
1112
.
4.
Huang
,
R. F.
, and
Tsai
,
F. C.
, 2001, “
Flow Field Characteristics of Swirling Double Concentric Jets
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
151
161
.
5.
Crow
,
S. C.
, and
Champagne
,
F. H.
, 1971, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
0022-1120,
48
, pp.
547
591
.
6.
Strawa
,
A. W.
, and
Cantwell
,
B. J.
, 1985, “
Visualization of the Structure of a Pulsed Methane/Air Diffusion Flame
,”
Phys. Fluids
1070-6631,
28
, pp.
2317
2320
.
7.
Kim
,
T. K.
,
Park
,
J.
, and
Shih
,
H. D.
, 1993, “
Mixing Mechanism Near the Nozzle Exit in a Tone Excited Non-Premixed Jet Flame
,”
Combust. Sci. Technol.
0010-2202,
89
, pp.
83
100
.
8.
Oh
,
S. K.
, and
Shin
,
H. D.
, 1998, “
A Visualization Study on the Effect of Forcing Amplitude on Tone-excited Isothermal Jets and Jet Diffusion Flames
,”
Int. J. Energy Res.
0363-907X,
22
, pp.
343
354
.
9.
Lee
,
K. M.
,
Kim
,
T. K.
,
Kim
,
W. J.
,
Kim
,
S. G.
,
Park
,
J.
, and
Keel
,
S. N.
, 2002, “
A Visual Study on Flame Behavior in Tone-Excited Non-Premixed Jet Flames
,”
Fuel
0016-2361,
81
, pp.
2249
2255
.
10.
Demare
,
D.
, and
Baillot
,
F.
, 2004, “
Acoustic Enhancement of Combustion in Lifted Non-Premixed Jet Flames
,”
Combust. Flame
0010-2180,
139
, pp.
312
328
.
11.
Baillot
,
F.
, and
Demare
,
D.
, 2002, “
Physical Mechanisms of Lifted Non-Premixed Flame Stabilized in an Acoustic Field
,”
Combust. Sci. Technol.
0010-2202,
174
, pp.
73
98
.
12.
Chao
,
Y. C.
,
Wu
,
C. Y.
,
Yuan
,
T.
, and
Cheng
,
T. S.
, 2002, “
Stabilization Process of a Lifted Flame Tuned by Acoustic Excitation
,”
Combust. Sci. Technol.
0010-2202,
174
, pp.
87
110
.
13.
Lovett
,
J. A.
, and
Turns
,
S. R.
, 1990, “
Experiments on Axisymmetrically Pulsed Turbulent Jet Flames
,”
AIAA J.
0001-1452,
28
, pp.
38
46
.
14.
Chao
,
Y. C.
,
Yuan
,
T.
, and
Tseng
,
C. S.
, 1996, “
Effects of Flame Lifting and Acoustic Excitation on the Reduction of NOx Emissions
,”
Combust. Sci. Technol.
0010-2202,
113
, pp.
49
65
.
15.
Wu
,
C. Y.
,
Chao
,
Y. C.
,
Cheng
,
T. S.
,
Li
,
Y. H.
,
Lee
,
K. Y.
, and
Yuan
,
T.
, 2006, “
The Blowout Mechanism of Turbulent Jet Diffusion Flames
,”
Combust. Flame
0010-2180,
145
, pp.
481
494
.
16.
Lakshminarasimhan
,
K.
,
Clemens
,
N. T.
, and
Ezekoye
,
O. A.
, 2006, “
Characteristics of Strongly-Forced Turbulent Jets and Non-Premixed Jet Flames
,”
Exp. Fluids
0723-4864,
41
, pp.
523
542
.
17.
Parikh
,
P. G.
, and
Moffat
,
R. J.
, 1982, “
Resonant Entrainment of a Confined Pulsed Jets
,”
ASME Trans. J. Fluids Eng.
0098-2202,
104
, pp.
482
488
.
18.
Hermanson
,
J. C.
,
Dugnani
,
R.
, and
Johari
,
H.
, 2000, “
Structure and Flame Length of Fully-Modulated, Pulsed Diffusion Flames
,”
Combust. Sci. Technol.
0010-2202,
155
, pp.
203
225
.
19.
Huang
,
R. F.
, and
Yen
,
S. C.
, 2008, “
Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers
,”
Combust. Flame
0010-2180,
155
, pp.
539
556
.
20.
Ginevsky
,
A. S.
,
Vlasov
,
Y. V.
, and
Karavosov
,
R. K.
, 2004,
Acoustic Control of Turbulent Jets
,
Springer-Verlag
,
Berlin
, pp.
33
99
.
21.
Hjelmfelt
,
A. T.
, Jr.
, and
Mockros
,
L. F.
, 1966, “
Motion of Discrete Particles in a Turbulent Fluid
,”
Appl. Sci. Res.
0003-6994,
16
, pp.
149
161
.
22.
Durst
,
F.
,
Melling
,
A.
, and
Whitelaw
,
J. H.
, 1976,
Principles and Practice of Laser-Doppler Anemometer
,
Academic
,
London, UK
, pp.
144
151
.
23.
Huang
,
R. F.
, and
Tsai
,
F. C.
, 2004, “
Flow and Mixing Characteristics of Swirling Wakes in Blockage-Effect Regime
,”
J. Wind Eng. Ind. Aerodyn.
,
92
, pp.
199
214
.
24.
Kinsler
,
L. E.
, and
Frey
,
A. R.
, 1982,
Fundamentals of Acoustics
, 2nd ed.,
Wiley
,
New York
, pp.
247
293
.
25.
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
, 1988,
Fundamentals of Air Pollution Engineering
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
295
307
.
26.
Eaton
,
A. R.
,
Frey
,
S. F.
,
Cusano
,
D. M.
,
Plesniak
,
M. W.
, and
Sojka
,
P. E.
, 1996, “
Development of a Full-Field Planar Mei Scattering Technique for Evaluating Swirling Mixers
,”
Exp. Fluids
0723-4864,
21
, pp.
325
330
.
27.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
, 1998, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
0022-1120,
360
, pp.
121
140
.
You do not currently have access to this content.