The simulation of heat release, flame propagation speeds, and pollutant formation was carried out in both a turbocharged compressed natural gas (CNG) engine and a multivalve naturally aspirated bifuel engine running on either CNG or gasoline. The predictive tool used for investigation is based on an enhanced fractal geometry concept of the flame front, which is able to capture the modulation of turbulent to laminar burning speed ratio throughout the overall combustion phase without introducing flame kernel growth or burnout submodels. The prediction model was applied to a wide range of engine speeds, loads, relative air-fuel ratios, and spark advances, and the obtained results were compared to experimental data. These latter were extracted from measured in-cylinder pressure by an advanced diagnostics technique that was previously developed by the authors. The results confirmed a quite accurate prediction of burning speed even without any kind of tuning, with respect to different currently available fractal as well as nonfractal approaches for the simulation of flame-turbulence interaction. Furthermore, the computational code proved to be capable of capturing the effects of fuel composition, different combustion-chamber concepts, and operating conditions on engine performance and emissions.

1.
Morikawa
,
K.
,
Kaneko
,
M.
,
Moriyoshi
,
Y.
, and
Sano
,
M.
, 2005, “
A Study on New Combustion Method of High Compression Ratio Spark Ignition Engine
,” SAE Paper No. 2005-01-0240.
2.
Habermann
,
K.
,
Lang
,
O.
,
Geiger
,
J.
, and
Wittler
,
M.
, 2005, “
Boosting and Direct Injection—Synergies for Future Gasoline Engines
,” SAE Paper No. 2005-01-1144.
3.
Kato
,
K.
,
Igarashi
,
K.
,
Masuda
,
M.
,
Otsubo
,
K.
,
Yasuda
,
A.
,
Takeda
,
K.
, and
Sato
,
T.
, 1999, “
Development of Engine for Natural Gas Vehicle
,” SAE SP-1436 Combustion in SI Engines, pp.
52
60
.
4.
Anand
,
G.
,
Ravi
,
M. R.
, and
Subrahmanyam
,
J. P.
, 2005, “
Performance and Emissions of Natural Gas and Hydrogen/Natural Gas Blended Fuels in Spark Ignition Engine
,” ASME Paper ICES2005-1086.
5.
Zhang
,
F. R.
,
Okamoto
,
K.
,
Morimoto
,
S.
, and
Shoji
,
F.
, 1998, “
Methods of Increasing the BMEP (Power Output) for Natural Gas Spark Ignition Engines
,” SAE SP-1371 Combustion Processes in Engines Utilizing Gaseous Fuels, pp.
11
19
.
6.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
7.
Blizzard
,
N. C.
, and
Keck
,
J. C.
, 1974, “
Experimental and Theoretical Investigation of Turbulent Burning Model for Internal Combustion Engines
,” SAE Paper No. 740191.
8.
Heikal
,
M. R.
,
Benson
,
R. S.
, and
Annand
,
W. J. D.
, 1976, “
A Model for Turbulent Burning Speed in Spark Ignition Engines
,” SAE Paper No. 760160.
9.
Poulos
,
S. G.
, and
Heywood
,
J. B.
, 1983, “
The Effect of Chamber Geometry on Spark-Ignition Engine Combustion
,” SAE Paper No. 830334.
10.
Wahiduzzaman
,
S.
,
Morel
,
T.
, and
Sheard
,
S.
, 1993, “
Comparison of Measured and Predicted Combustion Characteristics of a Four-Valve SI Engine
,” SAE Paper No. 930613.
11.
De Petris
,
C.
,
Diana
,
S.
,
Giglio
,
V.
,
Golini
,
S.
, and
Police
,
G.
, 1995, “
Numerical Simulation of Combustion in Premixed SI Engines Using Fractal Flame Models
,” SAE Paper No. 952383.
12.
Matthews
,
R. D.
,
Hall
,
M. J.
,
Dai
,
W.
, and
Davis
,
G. C.
, 1996, “
Combustion Modeling in SI Engines With a Peninsula-Fractal Combustion Model
,” SAE Paper No. 960072.
13.
Yoshiyama
,
S.
,
Tomita
,
E.
,
Zhang
,
Z.
, and
Hamamoto
,
Y.
, 2001, “
Measurement and Simulation of Turbulent Flame Propagation in a Spark Ignition Engine by Using Fractal Burning Model
,” SAE Paper No. 2001-01-3603.
14.
D’Errico
,
G.
,
Ferrari
,
G.
,
Onorati
,
A.
, and
Cerri
,
T.
, 2002, “
Modeling the Pollutant Emissions From a SI Engine
,” SAE Paper No. 2002-01-0006.
15.
Bozza
,
F.
,
Gimelli
,
A.
,
Merola
,
S. S.
, and
Vaglieco
,
B. M.
, 2005, “
Validation of a Fractal Combustion Model Through Flame Imaging
,” SAE Paper No. 2005-01-1120.
16.
Baratta
,
M.
,
Catania
,
A. E.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2006, “
Development and Assessment of a Multizone Combustion Simulation Code for SI Engines Based on a Novel Fractal Model
,” SAE Paper No. 2006-01-0048.
17.
Bozza
,
F.
,
Gimelli
,
A.
,
Strazzullo
,
L.
,
Torella
,
E.
, and
Cascone
,
C.
, 2007, “
Steady-State and Transient Operation Simulation of a “Downsized,” Turbocharged SI Engine
,” SAE Paper No. 2007-01-0381.
18.
Baratta
,
M.
,
Catania
,
A. E.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2005, “
Flame Propagation Speed in SI Engines: Modeling and Experimental Assessment
,” ASME Paper ICEF2005-1216.
19.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2004, “
A Diagnostic Tool for the Analysis of Heat Release, Flame Propagation Parameters and NO Formation in SI Engines
,”
COMODIA 04
,
Yokohama, Japan
, Aug. 2–5, JSME No. 04-202, pp.
471
486
.
20.
Gülder
,
Ö. L.
, and
Smallwood
,
G. J.
, 1995, “
Inner Cutoff Scale of Flame Surface Wrinkling in Turbulent Premixed Flames
,”
Combust. Flame
0010-2180,
103
, pp.
107
114
.
21.
Lee
,
T. W.
, and
Lee
,
S. J.
, 2003 “
Direct Comparison of Turbulent Burning Velocity and Flame Surface Properties in Turbulent Premixed Flames
,”
Combust. Flame
0010-2180,
132
, pp.
492
502
.
22.
Metghalchi
,
M.
, and
Keck
,
J. C.
, 1982, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane and Indolene at High Pressure and Temperature
,”
Combust. Flame
0010-2180,
48
, pp.
191
210
.
23.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2005, “
Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine
,”
SAE 2004 Trans., Journal of Engines
, 113,
SAE International
, pp.
682
703
.
24.
Iljima
,
T.
, and
Takeno
,
T.
, 1986, “
Effects of Temperature and Pressure on Burning Velocity
,”
Combust. Flame
0010-2180,
65
, pp.
456
468
.
25.
Baratta
,
M.
,
d’Ambrosio
,
S.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2006, “
Cycle-Resolved Detection of Combustion Start in SI Engines by Means of Different In-Cylinder Pressure Data-Reduction Techniques
,” ASME Paper No. ICES2006-1367.
26.
Catania
,
A. E.
,
Misul
,
D.
,
Spessa
,
E.
, and
Martorana
,
G.
, 2001, “
Conversion of a Multivalve Gasoline Engine to Run on CNG
,”
SAE 2000 Trans., Journal of Engines
, 109,
SAE International
, pp.
809
817
.
27.
d’Ambrosio
,
S.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
, 2006, “
Evaluation of Combustion Velocities in Bi-Fuel Engines by Means of an Enhanced Diagnostic Tool Based on a Quasi-Dimensional Multizone Model
,”
SAE 2005 Trans., Journal of Engines
, 114,
SAE International
, pp.
975
993
.
28.
d’Ambrosio
,
S.
,
Spessa
,
E.
,
Vassallo
,
A.
,
Ferrera
,
M.
, and
Peletto
,
C.
, 2006, “
Experimental Investigation of Fuel Consumption, Exhaust Emissions and Heat Release of a Small-Displacement Turbocharged CNG Engine
,” SAE Paper No. 2006-01-0049.
29.
Catania
,
A. E.
, and
Spessa
,
E.
, 1997, “
Speed Dependence of Turbulence Properties in a High-Squish Automotive Engine Combustion System
,”
SAE 1996 Trans., Journal of Engines
, 105,
SAE International
, pp.
186
196
.
You do not currently have access to this content.