Two reduced reaction mechanisms were established that predict reliably for pressures up to about the heat release for different syngas mixtures including initial concentrations of methane. The mechanisms were validated on the base of laminar flame speed data covering a wide range of preheat temperature, pressure, and fuel-air mixtures. Additionally, a global reduced mechanism for syngas, which comprises only two steps, was developed and validated, too. This global reduced and validated mechanism can be incorporated into CFD codes for modeling turbulent combustion in stationary gas turbines.
Issue Section:
Gas Turbines: Combustion, Fuels, and Emissions
1.
Ern
, A.
, Douglas
, C. C.
, and Smooke
, M. D.
, 1991, “Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,” Lecture Notes in Physics
, Springer Verlag
, New York
, p. 384
.2.
Boni
, A. A.
, and Penner
, R. C.
, 1977, “Sensitivity Analysis of a Mechanism for Methane Oxidation Kinetics
,” Combust. Sci. Technol.
0010-2202, 15
, pp. 99
–106
.3.
Jazbec
, M.
, Fletcher
, D. F.
, and Haynes
, B. S.
, 2000, “Simulation of the Ignition of Lean Methane Mixtures Using CFD Modelling and a Reduced Chemistry Mechanism
,” Appl. Math. Model.
0307-904X, 24
, pp. 689
–696
.4.
Sher
, E.
, and Refael
, S.
, 1988, “A Simplified Reaction Scheme for the Combustion of Hydrogen Enriched Methane/air Flame
,” Combust. Sci. Technol.
0010-2202, 59
, pp. 371
–389
.5.
Bilger
, R. W.
, and Starner
, S. H.
, 1990, “On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames
,” Combust. Flame
0010-2180, 80
, pp. 135
–149
.6.
Kazakov
, A.
, and Frenklach
, M.
, 1994, GRI 1.2̱red, http://www.me.berkeley.edu/drm/http://www.me.berkeley.edu/drm/.7.
Van Maaren
, A.
, Thung
, D. S.
, and De Goey
, L. P.
, 1994, “Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,” Combust. Sci. Technol.
0010-2202, 96
, pp. 327
–344
.8.
Gibbs
, G. J.
, and Calcote
, H. F.
, 1959, “Effect of molecular Structure on Burning Velocity
,” J. Chem. Eng. Data
0021-9568, 4
(3
), pp. 226
–237
.9.
Eberius
, H.
, and Kick
, T.
, 1992, “Stabilization of Premixed, Conical Methane Flames at High Pressure
,” Ber. Bunsenges. Phys. Chem.
0005-9021, 96
, pp. 1416
–1419
.10.
Zhu
, D. L.
, Egolfopoulos
, F. N.
, and Law
, C. K.
, 1988, “Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,” Proc. Combust. Inst.
1540-7489, 22
, pp. 1537
–1545
.11.
Egolfopoulos
, F. N.
, Cho
, P.
, and Law
, C. K.
, 1989, “Laminar Flame Speeds of Methane-Air Under Reduced and Elevated Pressures
,” Combust. Flame
0010-2180, 76
, pp. 375
—391
.12.
Rozenchan
, G.
, Tse
, S. D.
, Zhu
, D. L.
, and Law
, C. K.
, 2001, “Laminar Burning Rates and Markstein Lengths of CH4/O2/Inert Mixtures at High Pressure
,” Paper No. AIAA -2001–1080.13.
Smith
, G. P.
, Golden
, D. M.
, Frenklach
, M.
, Moriarty
, N. W.
, Eiteneer
, B.
, Goldenberg
, M.
, Bowman
, C. T.
, Hanson
, R. K.
, Song
, S.
, Gardiner
Jr., W. C.
, Lissianski
, J.
, and Qin
, Z.
, 1999, GRI 3.0 mechanism, Version 3.0 7/30/99. See http://www.me.berkeley.edu/gri_mechhttp://www.me.berkeley.edu/gri_mech14.
15.
Fluent Inc., Fluent 6.1; see www.fluent.comwww.fluent.com
16.
Turanyi
, T.
, “KINALC: a CHEMKIN base program for kinetic analyses
,” available at http://www.chem.leeds.ac.uk/Combustion/kinalc.htmhttp://www.chem.leeds.ac.uk/Combustion/kinalc.htm. Tomlin
, A. S.
, Turanyi
, T.
, and Pilling
, M. J.
, 1997, “Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanism
,” Low Temperature Combustion and Autoignition
, M. J.
Pilling
and G.
Hancock
, eds., Elsevier
, Amsterdam
, pp. 293
–437
.17.
Baulch
, D. L.
, Cobos
, C. J.
, Cox
, R. A.
, Frank
, P.
, Hayman
, G.
, Just
, Th.
, Kerr
, J. A.
, Murrells
, T.
, Pilling
, M. J.
, Troe
, J.
, Walker
, R. W.
, and Warnatz
, J.
, 1994, “Evaluated Kinetic Data for Combustion Modelling Supplement I
,” J. Phys. Chem. Ref. Data
0047-2689, 23
, pp. 847
–1031
.18.
Vagelopoulos
, C. M.
, and Egolfopoulos
, F. N.
, 1994, “Laminar Flame Speeds and Extinction Strain Rates of Mixture of Carbon Monoxide With Hydrogen, Methane and Air
,” Proc. Combust. Inst.
1540-7489, 25
, pp. 1317
–1323
.19.
McLean
, I. C.
, Smith
, D. B.
, and Taylor
, S. C.
, 1994, “The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH reaction
,” Proc. Combust. Inst.
1540-7489, 25
, pp. 749
–757
.20.
Günther
, R.
, and Janisch
, G.
, 1971, “Messwerte der Flammengeschwindigkeit von Gasen und Gasgemischen
,” Chem.-Ing.-Tech.
0009-286X, 43
, pp. 975
–978
.21.
Lauer
, G.
, and Leuckel
, W.
, 1994, AG Turbo, 4. Status Seminar, University Karlsruhe
.22.
Mueller
, M. A.
, Yetter
, R. A.
, and Dryer
, F. L.
, 1998, “Measurement of the Rate Constant for H+O2=HO2+M
,” Proc. Combust. Inst.
1540-7489, 27
, pp. 177
–184
.23.
Yetter
, R. A.
, and Dryer
, F. L.
, 1991, “A Comprehensive Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics
,” Combust. Sci. Technol.
0010-2202, 79
, pp. 97
–128
.24.
Gorsky
, W. G.
, 1984, in Planning of Kinetical Experiments
, Nauka
, Moscow
, p. 241
(in Russian).Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.