Two reduced reaction mechanisms were established that predict reliably for pressures up to about 20bar the heat release for different syngas mixtures including initial concentrations of methane. The mechanisms were validated on the base of laminar flame speed data covering a wide range of preheat temperature, pressure, and fuel-air mixtures. Additionally, a global reduced mechanism for syngas, which comprises only two steps, was developed and validated, too. This global reduced and validated mechanism can be incorporated into CFD codes for modeling turbulent combustion in stationary gas turbines.

1.
Ern
,
A.
,
Douglas
,
C. C.
, and
Smooke
,
M. D.
, 1991, “
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames
,”
Lecture Notes in Physics
,
Springer Verlag
,
New York
, p.
384
.
2.
Boni
,
A. A.
, and
Penner
,
R. C.
, 1977, “
Sensitivity Analysis of a Mechanism for Methane Oxidation Kinetics
,”
Combust. Sci. Technol.
0010-2202,
15
, pp.
99
106
.
3.
Jazbec
,
M.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
, 2000, “
Simulation of the Ignition of Lean Methane Mixtures Using CFD Modelling and a Reduced Chemistry Mechanism
,”
Appl. Math. Model.
0307-904X,
24
, pp.
689
696
.
4.
Sher
,
E.
, and
Refael
,
S.
, 1988, “
A Simplified Reaction Scheme for the Combustion of Hydrogen Enriched Methane/air Flame
,”
Combust. Sci. Technol.
0010-2202,
59
, pp.
371
389
.
5.
Bilger
,
R. W.
, and
Starner
,
S. H.
, 1990, “
On Reduced Mechanisms for Methane-Air Combustion in Nonpremixed Flames
,”
Combust. Flame
0010-2180,
80
, pp.
135
149
.
6.
Kazakov
,
A.
, and
Frenklach
,
M.
, 1994, GRI 1.2̱red, http://www.me.berkeley.edu/drm/http://www.me.berkeley.edu/drm/.
7.
Van Maaren
,
A.
,
Thung
,
D. S.
, and
De Goey
,
L. P.
, 1994, “
Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures
,”
Combust. Sci. Technol.
0010-2202,
96
, pp.
327
344
.
8.
Gibbs
,
G. J.
, and
Calcote
,
H. F.
, 1959, “
Effect of molecular Structure on Burning Velocity
,”
J. Chem. Eng. Data
0021-9568,
4
(
3
), pp.
226
237
.
9.
Eberius
,
H.
, and
Kick
,
T.
, 1992, “
Stabilization of Premixed, Conical Methane Flames at High Pressure
,”
Ber. Bunsenges. Phys. Chem.
0005-9021,
96
, pp.
1416
1419
.
10.
Zhu
,
D. L.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
, 1988, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Proc. Combust. Inst.
1540-7489,
22
, pp.
1537
1545
.
11.
Egolfopoulos
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
, 1989, “
Laminar Flame Speeds of Methane-Air Under Reduced and Elevated Pressures
,”
Combust. Flame
0010-2180,
76
, pp.
375
391
.
12.
Rozenchan
,
G.
,
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
, 2001, “
Laminar Burning Rates and Markstein Lengths of CH4/O2/Inert Mixtures at High Pressure
,” Paper No. AIAA -2001–1080.
13.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
Jr.,
W. C.
,
Lissianski
,
J.
, and
Qin
,
Z.
, 1999, GRI 3.0 mechanism, Version 3.0 7/30/99. See http://www.me.berkeley.edu/gri_mechhttp://www.me.berkeley.edu/gri_mech
15.
Fluent Inc., Fluent 6.1; see www.fluent.comwww.fluent.com
16.
Turanyi
,
T.
, “
KINALC: a CHEMKIN base program for kinetic analyses
,” available at http://www.chem.leeds.ac.uk/Combustion/kinalc.htmhttp://www.chem.leeds.ac.uk/Combustion/kinalc.htm.
Tomlin
,
A. S.
,
Turanyi
,
T.
, and
Pilling
,
M. J.
, 1997, “
Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanism
,”
Low Temperature Combustion and Autoignition
,
M. J.
Pilling
and
G.
Hancock
, eds.,
Elsevier
,
Amsterdam
, pp.
293
437
.
17.
Baulch
,
D. L.
,
Cobos
,
C. J.
,
Cox
,
R. A.
,
Frank
,
P.
,
Hayman
,
G.
,
Just
,
Th.
,
Kerr
,
J. A.
,
Murrells
,
T.
,
Pilling
,
M. J.
,
Troe
,
J.
,
Walker
,
R. W.
, and
Warnatz
,
J.
, 1994, “
Evaluated Kinetic Data for Combustion Modelling Supplement I
,”
J. Phys. Chem. Ref. Data
0047-2689,
23
, pp.
847
1031
.
18.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
, 1994, “
Laminar Flame Speeds and Extinction Strain Rates of Mixture of Carbon Monoxide With Hydrogen, Methane and Air
,”
Proc. Combust. Inst.
1540-7489,
25
, pp.
1317
1323
.
19.
McLean
,
I. C.
,
Smith
,
D. B.
, and
Taylor
,
S. C.
, 1994, “
The Use of Carbon Monoxide/Hydrogen Burning Velocities to Examine the Rate of the CO+OH reaction
,”
Proc. Combust. Inst.
1540-7489,
25
, pp.
749
757
.
20.
Günther
,
R.
, and
Janisch
,
G.
, 1971, “
Messwerte der Flammengeschwindigkeit von Gasen und Gasgemischen
,”
Chem.-Ing.-Tech.
0009-286X,
43
, pp.
975
978
.
21.
Lauer
,
G.
, and
Leuckel
,
W.
, 1994, AG Turbo, 4. Status Seminar,
University Karlsruhe
.
22.
Mueller
,
M. A.
,
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1998, “
Measurement of the Rate Constant for H+O2=HO2+M
,”
Proc. Combust. Inst.
1540-7489,
27
, pp.
177
184
.
23.
Yetter
,
R. A.
, and
Dryer
,
F. L.
, 1991, “
A Comprehensive Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics
,”
Combust. Sci. Technol.
0010-2202,
79
, pp.
97
128
.
24.
Gorsky
,
W. G.
, 1984, in
Planning of Kinetical Experiments
,
Nauka
,
Moscow
, p.
241
(in Russian).
You do not currently have access to this content.