The high-temperature fatigue response of titanium and nickel alloys destined for high-performance gas turbine applications is considered with particular emphasis given to the role of creep and environmental damage during crack growth. In an attempt to partition the respective contributions from these two rate controlling factors, data are presented for a range of temperature, stress ratio, and pressure conditions. The implications for the extended use of such alloys in future gas turbine designs are discussed.

1.
Evans
,
W. J.
,
1998
, “
Optimizing Mechanical Properties in Alpha+Beta Titanium Alloys
,”
Mater. Sci. Eng., A
,
243
, pp.
89
96
.
2.
Petit, J., Mendez, J., Berata, W., Legendre, L., and Muller, C., 1992, “Influence of Environment on the Propagation of Short Fatigue Cracks in a Titanium Alloy,” Short Fatigue Cracks, edited by K. J. Miller and E. R. de los Rios, eds., Mechanical Engineering Publications, London, ESIS13, pp. 235–250.
3.
Bache
,
M. R.
,
Evans
,
W. J.
, and
McElhone
,
M.
,
1997
, “
The Effects of Environment and Internal Oxygen on Fatigue Crack Propagation in Ti-6A1-4V
,”
Mater. Sci. Eng., A
,
234–236
, pp.
918
922
.
4.
Skelton, D., and Knowles, D. M., 1999, Fatigue ’99, Wu and Wang, eds., Beijing, EMAS, Cradley Heath, West Midlands, UK, pp. 2111–2116.
5.
Ritchie, R. O., and Lankford, J., eds., Small Fatigue Cracks, TMS-AIME, Warrendale, PA.
6.
Harrison, G. F., and Boyd-Lee, A. D., 1999, “Life Extension Methods for Fatigue Critical Aeroengine Components,” DERA Conference on Gas Turbines—Materials Make the Difference, Mechanical Services Sector, DERA, Farnborough, UK, pp. 15-1–15-10.
7.
Asquith, G., and Pickard, A. C., 1988, “Fatigue Testing of Gas Turbine Components,” Full Scale Fatigue Testing of Components and Structures, K. J. Marsh, ed., Butterworths, London, V2, pp. 201–234.
8.
Bache, M. R., 1999, “Microstructural Influences on Fatigue Crack Growth in the Near Alpha Titanium Alloy Timetal 834,” Small Fatigue Cracks: Mechanics, Mechanisms and Applications, K. S. Ravichandran, R. O. Ritchie, and Y. Murakami, eds., Elsevier, New York, pp. 199–206.
9.
Gangloff, R. P., and Ritchie, R. O., 1985, Fundamentals of Deformation and Fracture, B. A. Bilby, K. J. Miller, and J. R. Willis, eds., Cambridge Univ. Press, London, pp. 529–558.
10.
Petit, J., 1992, “Modelling of Intrinsic Fatigue Crack Propagation,” Theoretical Concepts and Numerical Analysis of Fatigue, A. F. Blom and C. J. Beevers, eds., EMAS, pp. 131–151.
11.
Bache
,
M. R.
,
Evans
,
W. J.
, and
Hardy
,
M. C.
,
1999
, “
The Effects of Environment and Loading Waveform on Fatigue Crack Growth in Inconel 718
,”
Int. J. Fatigue
,
21
, pp.
69
77
.
12.
Andrieu, E., Hochstetter, G., Molins, R., and Pineau, A., 1994, Superalloys 718, 625 and 706 and Various Derivatives, E. A. Loria, ed., The Minerals, Metals and Materials Society, pp. 619–631.
13.
Lesterlin, S., Sarrazin-Baudoux, C., and Petit, J., 1995, “Temperature-Environment Interactions on Fatigue Behaviour in Ti6246 Alloy,” Titanium ’95: Science and Technology, edited by P. A. Blenhinsop, W. J. Evans, and H. Flower, eds., The Institute of Materials, The University Press, UK, pp. 1211–1218.
14.
Ghonem
,
H.
, and
Foerch
,
R.
,
1991
, “
Frequency Effects on Fatigue Crack Growth Behavior in a Near Alpha Titanium Alloy
,”
Mater. Sci. Eng.
,
138
, pp.
69
81
.
15.
Foerch
,
R.
,
Madsen
,
A.
, and
Ghonem
,
H.
,
1993
, “
Environmental Interactions in High Temperature Fatigue Crack Growth of Ti-1100
,”
Metall. Trans.
,
24
, p.
1321
1321
.
16.
Hardy, M. C., Bache, M. R., Konig, G., and Henderson, M. B., 1999, “Influence of Creep and Oxidation on the Elevated Temperature Crack Growth Behaviour of a Near Alpha Titanium Alloy,” Life Assessment of Hot Section Gas Turbine Components, IOM, London.
17.
Bricknell
,
R. H.
, and
Woodford
,
D. A.
,
1981
, “
Embrittlement of Nickel Following High Temperature Air Exposure
,”
Metall. Trans.
,
12A
, pp.
425
433
.
18.
Wallace, T. A., 1996, “The Effect of Oxidation Exposure on the Mechanical Properties of Timetal-1100,” Titanium ’95: Science and Technology, P. A. Blenkinsop, W. J. Evans, and H. M. Flower, eds., The Institute of Materials, The University Press, UK, pp. 1943–1950.
19.
Weerasooriya, T., 1988, “Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature,” Fracture Mechanics: 19th Symposium, ASTM-STP 969, ASTM, Philadelphia, PA, pp. 907–923.
20.
Browning, P. F., Henry, M. F., and Rajan, K., 1997, “Oxidation Mechanisms in Relation to High Temperature Crack Propagation Properties of Alloy 718 in H2/H2O/Inert Gas Environment,” Superalloy 718, 625, 706 and Various Derivatives, The Minerals, Metal and Materials Society, Warrendale, PA, pp. 665–678.
21.
Miller, K. J., 2000, “Blind Alleys on the Route to Real Fatigue Solutions: A Historical Perspective,” Fatigue 2000, Proceedings of Fourth International Conference of the EIS, Cambridge, UK, M. R. Bache, P. A. Blackmore, J. Draper, J. H. Edwards, P. Roberts, and J. R. Yates, eds., EMAS, Cradley Heath, West Midlands, UK, Mar. 14.
22.
Miller, K. J., 2000, “Blind Alleys on the Route to Real Fatigue Solutions: A Historical Perspective,” Fatigue 2000—Fracture & Durability Assessment of Materials, Components nad Structures, M. R. Bache, P. A. Blackmore, J. Draper, J. H. Edwards, P. Roberts, and J. R. Yates, eds., Proceedings of the 4th International Conference on the Engineering Integrity Society, Apr. 10–12, Cambridge, EMAS, Cradley Heath, West Midlands, UK.
You do not currently have access to this content.