There exists today considerable interest in developing continuous fiber-reinforced ceramic matrix composites (CMC) that can operate as hot-section components in advanced gas turbine engines. The objective of this paper is to present simple analytical and empirical models for predicting the effects of time and temperature on CMC tensile rupture under various composite and engine conditions. These models are based on the average rupture behavior measured in air for oxide and SiC-based fibers of current technical interest. For example, assuming a cracked matrix and Larson-Miller rupture curves for single fibers, it is shown that model predictions agree quite well with high-temperature stress-rupture data for SiC/SiC CMC. Rupture models, yet to be validated, are also presented for three other relevant conditions: (a) SiC fibers become oxidatively bonded to each other in a cracked CMC, (b) applied CMC stresses are low enough to avoid matrix cracking, and (c) Si-based CMC are subjected to surface recession in high-temperature combustion gases. The practical implications of the modeling results are discussed, particularly in regard to the optimum fibers and matrices for CMC engine applications and the thermostructural capability of SiC/SiC CMC in comparison to nickel-based superalloys, monolithic ceramics, and oxide/oxide CMC.

1.
Goldsby, J. C., Yun, H. M., DiCarlo, J. A., and Morscher, G. N., 1993, “Thermomechanical Properties of Advanced Polycrystalline Oxide Fibers,” HITEMP Review 1993, NASA CP 19117, Paper No. 85.
2.
DiCarlo, J. A., Yun, H. M., and Goldsby, J. C., 1995, “Creep and Rupture Behavior of Advanced SiC Fibers,” Proceedings of ICCM-10, Microstructure, Degradation, and Design, A. Poursartip, and K. N., Street, eds., Woodhead Publishing Ltd., Cambridge, UK, VI, pp. 315–322.
3.
Yun, H. M., Goldsby, J. C., and DiCarlo, J. A., 1995, “Thermomechanical Behavior of Three Types of CVD SiC Monofilaments,” HiTEMP Review 1995, Vol. III, NASA Conference Publication 10178, Paper No. 56.
4.
Yun
,
H. M.
, and
DiCarlo
,
J. A.
,
1999
, “
Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers
,”
Ceram. Eng. Sci. Proc.
,
20
(
3
), pp.
259
272
.
5.
Yun, H. M., and DiCarlo, J. A., 1999, “Thermomechanical Characterization of SiC Fiber Tows and Implications for CMC,” Proceedings of ICCM-12, Paris, Paper No. 594, and NASA/TM–1999-209283.
6.
Yun
,
H. M.
, and
DiCarlo
,
J. A.
,
1996
, “
Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers
,”
Ceram. Trans.
,
74
, pp.
17
26
.
7.
DiCarlo, J. A., and Yun, H. M., 1998, “Thermostructural Performance Maps for Ceramic Fibers,” Proceedings of CIMTEC ’98, P. Vincenzini, ed., Techa Publishers, Srl, Florence, Paper No. SV-1: IL10.
8.
DiCarlo, J. A., and Dutta, S., 1995, “Continuous Ceramic Fibers for Ceramic Composites,” Handbook On Continuous Fiber Reinforced Ceramic Matrix Composites, R. Lehman, S. El-Rahaiby, and J. Wachtman, Jr., eds., CIAC, Purdue University, West Lafayette, Indiana, pp. 137–183.
9.
DiCarlo
,
J. A.
, and
Yun
,
H. M.
,
1998
, “
Microstructural Factors Affecting Creep-Rupture Failure of Ceramic Fibers
,”
Ceram. Trans.
,
99
, pp.
119
134
.
10.
Curtin
,
W. A.
,
1993
, “
Ultimate Strengths of Fibre-Reinforced Ceramics and Metals
,”
Composites
,
24
, pp.
98
102
.
11.
Zhu
,
S.
,
Mizuno
,
M.
,
Kagawa
,
Y.
,
Cao
,
J.
,
Nagano
,
Y.
, and
Kaya
,
H.
,
1999
, “
Creep and Fatigue Behavior in Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at High Temperatures
,”
J. Am. Ceram. Soc.
82
(
1
), pp.
117
128
.
12.
Gray, P., 1999, Honeywell Advanced Composites, Inc., private communication.
13.
Morscher
,
G. N.
,
1997
, “
Tensile Stress Rupture of SiC/SiC Minicomposites With Carbon and Boron Nitride Interphases at Elevated Temperatures in Air
,”
J. Am. Ceram. Soc.
,
80
(
8
), pp.
2029
2042
.
14.
Nell, J. M., and Grant, N. J., 1992, “Multiphase Strengthened Nickel Base Superalloys Containing Refractory Carbide Dispersions,” Superalloys 1992, S. D. Antolovich, R. W. Strusard, R. A. MacKay, D. L. Anton, T. Khan, R. D. Kissinger, and D. L. Klarstrom, eds., The Minerals, Metals & Materials Society, Warrendale, PA, p. 113.
15.
Chuang, T.-J., Carroll, D. F., and Wiederhorn, S. M., 1989, “Creep Rupture of a Metal-Ceramic Particulate Composite,” Seventh International Conference of Fracture, K. Salama, K. Ravi-Chandler, D. M. R. Taplin, and P. Ramo Rao, eds., Pergamon Press, New York, 4, pp. 2965–2976.
16.
Li, C. W., 1996, Allied-Signal Ceramics, private communication.
17.
Morscher, G. N., Gyekenyesi, J. Z., and Bhatt, R. T., “Damage Accumulation in Woven SiC/SiC Composites,” Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components, M. G. Jenkins, E. Lara-Curzio, and S. T. Gonczy, eds., American Society for Testing and Materials, West Conshohocken, PA, ASTM STP 1392.
18.
DiCarlo, J. A., and Yun, H. M., 1999, “Factors Controlling Stress-Rupture of Fiber-Reinforced Ceramic Composites,” Proceedings of ICCM-12 Congress, Paris, Paper No. 750.
19.
Monkman
,
F. C.
, and
Grant
,
N. J.
,
1956
, “
An Empirical Relationship between Rupture Life and Minimum Creep Rate
,”
Proc. ASTM
,
56
, pp.
593
620
.
20.
Smialek
,
J. L.
,
Robinson
,
R. C.
,
Opila
,
E. J.
,
Fox
,
D. S.
, and
Jacobson
,
N. S.
,
1999
, “
SiC and Si3N4 Recession Due to SiO2 Scale Volatility under Combustor Conditions
,”
Adv. Composite Mater.
,
8
(
1
), pp.
33
45
.
You do not currently have access to this content.