The purpose of the present work is to establish the design method of methanol steam-reformer for application to chemical recuperation in a gas turbine system. The reaction rate of the methanol steam-reforming was measured with a small amount of catalyst using the gaseous mixture of methanol, water, hydrogen, and carbon dioxide as a simulated product gas. The reaction rate equation could be expressed by power law of methanol mole fraction and total pressure. The reaction and heat transfer in the catalyst-packed bed was analyzed numerically using the reaction rate equation. The analytical results of temperature distribution and conversion were compared with the experimental results using a reforming tube. These results agreed well except for the region of high methanol conversion.

1.
Ogawa, T., Hori, M., Oohashi, Y., Murata, K., Fukuda, M., and Tamaura, Y., 1998, “Environment-Friendly Energy System,” Proc., 33rd IECEC, No. 179.
2.
Carapellucci, R., Risalvato, V., Bruno, C., and Cau, G., 1996, “Performance and Emissions of CRGT Power Generation Systems with Reformed Methanol,” Proc., IECEC 96, Vol. 2, pp. 707–712.
3.
Amphlett
,
J. C.
,
Mann
,
R. F.
, and
Weir
,
R. D.
,
1985
, “
Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 2: Kinetics of Methanol Decomposition Using Girdler G66B Catalyst
,”
Can. J. Chem. Eng.
,
63
, pp.
605
611
.
4.
Amphlett
,
J. C.
,
Mann
,
R. F.
, and
Weir
,
R. D.
,
1988
, “
Hydrogen Production by the Catalytic Steam Reforming of Methanol. Part 3: Kinetics of Methanol Decomposition Using C18HC Catalyst
,”
Can. J. Chem. Eng.
,
66
, pp.
950
956
.
5.
Jiang
,
C. J.
,
Trimm
,
D. L.
, and
Wainwright
,
M. S.
,
1993
, “
Kinetic mechanism for reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst
,”
Appl. Catal.
,
97
, pp.
145
158
.
6.
Jiang
,
C. J.
,
Trimm
,
D. L.
, and
Wainwright
,
M. S.
,
1993
, “
Kinetic study of steam reforming of methanol over copper-based catalysts
,”
Appl. Catal.
,
93
, pp.
245
255
.
7.
Idem
,
R. O.
, and
Bakhshi
,
N. N.
,
1996
, “
Kinetic Modeling of the Production of Hydrogen from the Methanol-steam Reforming Process over Mn-promoted Coprecipitated Cu-Al Catalyst
,”
Chem. Eng. Sci.
,
51
, No.
14
, pp.
3697
3708
.
8.
Fujimoto
,
S.
,
Ishihara
,
H.
, and
Tsuruno
,
S.
,
1987
, “
A study on a steam reformer for methanol
,”
JSME Int. J.
,
30
, No.
267
, pp.
1437
1442
.
9.
The´rien
,
N.
, and
Tessier
,
P.
,
1987
, “
Mode´lisation et simulation de la de´composition catalytique du me´thanol dans un re´acteur a` lit fixe
,”
Can. J. Chem. Eng.
,
65
, pp.
950
957
.
10.
Kuroda
,
K.
,
Imai
,
T.
, and
Yanagi
,
M.
,
1989
, “
Development of Methanol Reformer
,”
Mitsubishi Jukon Gihou
,
26
, No.
5
, pp.
408
412
.
11.
Nagaya
,
K.
,
Oshiro
,
H.
,
Ito
,
H.
, and
Yoshino
,
N.
,
1993
, “
Demonstration Test of Reformed Methanol Gas-Turbine Power Generation
,”
Hitachi Zousen Gihou
,
54
, No.
3
, pp.
180
184
.
12.
Murray
,
A. P.
, and
Snyder
,
T. S.
,
1985
, “
Steam-Methane Reformer Kinetic Computer Model with Heat Transfer and Geometry Options
,”
Ind. Eng. Chem. Process Des. Dev.
,
24
, pp.
286
294
.
13.
Alatiqui
,
I. M.
,
Meziou
,
A. M.
, and
Gasmelseed
,
G. A.
,
1989
, “
Modeling, Simulation and Sensitivity Analysis of Steam-Methane Reformers
,”
Int. J. Hydrogen Energy
,
14
, pp.
241
256
.
14.
Jiang
,
C. J.
,
Trimm
,
D. L.
, and
Wainwright
,
M. S.
,
1993
, “
Kinetic mechanism for the reaction between methanol and water over Cn-ZnO-Al2O3 catalyst
,”
Appl. Catal.
,
97
, pp.
145
158
.
15.
Tien
,
C. L.
, and
Hunt
,
M. L.
,
1987
, “
Boundary-Layer Flow and Heat Transfer in Porous Beds
,”
Chem. Eng. Prog.
,
21
, pp.
53
63
.
16.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
, pp.
89
94
.
17.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Non-Darcian Convection in Cylindrical Packed Beds
,”
Trans. ASME
,
110
, pp.
378
378
.
You do not currently have access to this content.