Modern hydrocarbon adsorbers for gasoline engines are promising candidates for cold start emission control. In this paper, the flow and heat transfer in a typical complex system, comprising a “barrel type” adsorber and two conventional catalysts is studied. A mathematical model is developed and applied for the computation of the flow and pressure distribution, as well as transient heat transfer in the system. The model is aimed at understanding and quantifying the particular thermal response behavior of hydrocarbon adsorber systems. Illustrative results with variable geometric parameters under realistic input conditions are presented. [S0742-4795(00)01701-4]

1.
Hochmuth, J. K., Burk, P. L., Tolentino, C., and Mignano, M. I., 1993, “Hydrocarbon Traps for Controlling Cold Start Emissions,” SAE Paper 930739.
2.
Abthoff, J., Kemmler, R., Klein, H., Matt, M., Robota, H. J., Wolsing, W., Wiehl, J., and Dunne, S. R., 1998, “Application of In-Line Hydrocarbon Adsorber Systems,” SAE Paper 980422.
3.
Noda, N., Takahashi, A., Shibagaki, Y., and Mizuno, H., 1998, “In-Line Hydrocarbon Adsorber for Cold Start Emissions—Part II,” SAE Paper 980423.
4.
Patil, M. D., Peng, L. Y., and Morse, K. E., 1998, “Airless In-Line Adsorber System for Reducing Cold Start HC Emissions,” SAE Paper 980419.
5.
Silver, R. G., Dou, D., Kirby, C. W., Richmond, R. P., Balland, J., and Dunne, S., 1997, “A Durable In-Line Hydrocarbon Adsorber for Reduced Cold Start Exhaust Emissions,” SAE Paper 972843.
6.
Buhrmaster, C. L., Locker, R. J., Patil, M. D., Nagel, J. N., and Socha, L. S., 1997, “Evaluation of In-Line Adsorber Technology,” SAE Paper 970267.
7.
Wendland, D. W., and Matthes, W. R., 1986, “Visualization of Automotive Catalytic Converter Internal Flows,” SAE Paper 861554.
8.
Lai
,
M. C.
,
Lee
,
T.
,
Kim
,
J. Y.
,
Cheng
,
C. Y.
,
Li
,
P.
, and
Chui
,
G.
,
1992
, “
Numerical and Experimental Characterizations of Automotive Catalytic Converter Internal Flows
,”
J. Fluids Struct.
6
, pp.
451
470
.
9.
Mondt, J. R., 1987, “Adapting the Heat and Mass Transfer Analogy to Model Performance of Automotive Catalytic Converters,” ASME J. Eng. Gas Turbines Power, 109.
10.
Blevins, R. D., 1984, Applied Fluid Dynamics Handbook, Van Nostrand Reinhold Company, New York.
11.
Day, J. P., 1997, “Substrate Effects on Light-Off—Part II: Cell Shape Contributions,” SAE Paper 971024.
12.
Incropera, F. P., and DeWitt, D. P., 1996, Fundamentals of Heat Transfer, 3rd ed., John Wiley & Sons, New York.
13.
Waermeatlas, 1988, VDI-Verlag GmbH, Duesseldorf.
14.
Will, N. S., and Bennett, C. J., 1992, “Flow Maldistributions in Automotive Converter Canisters and Their Effect on Emission Control,” SAE Paper 922339.
15.
Koltsakis, G. C., Konstantinidis, P. A., and Stamatelos, A. M., 1997, “Development and Application Range of Mathematical Models for 3-Way Catalytic Converters,” Applied Catalysis-B: Environmental, 12, pp. 161–191.
16.
Koltsakis
,
G. C.
,
1997
, “
Warm-Up Behavior of Monolithic Reactors Under Non-reacting Conditions
,”
Chem. Eng. Sci.
,
52
, No.
17
, pp.
2891
2899
.
17.
Hawthorn
,
R. D.
,
1974
, “
Afterburner Catalysts—Effects of Heat and Mass Transfer Between Gas and Catalyst Surface
,”
AIChE Symposium Series
No. 137, Vol.
70
, pp.
428
438
.
18.
Chen, D. K. S., Oh, S. H., Bissett, E. J., Van Ostrom, D. L., 1988, “A Three-Dimensional Model for the Analysis of Transient Thermal and Conversion Characteristics of Monolithic Catalytic Converters,” SAE Paper 880282.
19.
Koltsakis
,
G. C.
,
Kandylas
,
I. P.
, and
Stamatelos
,
A. M.
,
1998
, “
Three-Way Catalytic Converter Modeling and Applications
,”
Chem. Eng. Commun.
,
164
, pp.
153
189
.
20.
Bella
,
G.
,
Rocco
,
V.
, and
Maggiore
,
M.
,
1991
, “
A Study of Inlet Flow Distortion Effects on Automotive Catalytic Converters
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
419
426
.
You do not currently have access to this content.