This study addresses the importance of the different chemical pathways responsible for NOx formation in lean-premixed combustion, and especially the role of the nitrous oxide pathway relative to the traditional Zeldovich pathway. NOx formation is modeled and computed over a range of operating conditions for the lean-premixed primary zone of gas turbine engine combustors. The primary zone, of uniform fuel-air ratio, is modeled as a micromixed well-stirred reactor, representing the flame zone, followed by a series of plug flow reactors, representing the postflame zone. The fuel is methane. The fuel–air equivalence ratio is varied from 0.5 to 0.7.The chemical reactor model permits study of the three pathways by which NOx forms, which are the Zeldovich, nitrous oxide, and prompt pathways. Modeling is also performed for the well-stirred reactor alone. Three recently published, complete chemical kinetic mechanisms for the C1–C2 hydrocarbon oxidation and the NOx formation are applied and compared. Verification of the model is based on the comparison of its NOx output to experimental results published for atmospheric pressure jet-stirred reactors and for a 10 atm. porous-plate burner. Good agreement between the modeled results and the measurements is obtained for most of the jet-stirred reactor operating range. For the porous-plate burner, the model shows agreement to the NOx measurements within a factor of two, with close agreement occurring at the leanest and coolest cases examined. For lean-premixed combustion at gas turbine engine conditions, the nitrous oxide pathway is found to be important, though the Zeldovich pathway cannot be neglected. The prompt pathway, however, contributes small-to-negligible NOx. Whenever the NOx emission is in the 15 to 30 ppmυ (15 percent O2, dry) range, the nitrous oxide pathway is predicted to contribute 40 to 45 percent of the NOx for high-pressure engines (30 atm), and 20 to 35 percent of the NOx for intermediate pressure engines (10 atm). For conditions producing NOx of less than 10 ppmυ (15 percent O2, dry), the nitrous oxide contribution increases steeply and approaches 100 percent. For lean-premixed combustion in the atmospheric pressure jet-stirred reactors, different behavior is found. All three pathways contribute; none can be dismissed. No universal behavior is found for the pressure dependence of the NOx. It does appear, however, that lean-premixed combustors operated in the vicinity of 10 atm have a relatively weak pressure dependence, whereas combustors operated in the vicinity of 30 atm have an approximately square root pressure dependence of the NOx.
Skip Nav Destination
Article navigation
January 1995
Research Papers
The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion
D. G. Nicol,
D. G. Nicol
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
Search for other works by this author on:
R. C. Steele,
R. C. Steele
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
Search for other works by this author on:
N. M. Marinov,
N. M. Marinov
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
Search for other works by this author on:
P. C. Malte
P. C. Malte
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
Search for other works by this author on:
D. G. Nicol
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
R. C. Steele
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
N. M. Marinov
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
P. C. Malte
Department of Mechanical Engineering, Combustion Laboratories, University of Washington, Seattle, WA 98195
J. Eng. Gas Turbines Power. Jan 1995, 117(1): 100-111 (12 pages)
Published Online: January 1, 1995
Article history
Received:
March 17, 1993
Online:
November 19, 2007
Citation
Nicol, D. G., Steele, R. C., Marinov, N. M., and Malte, P. C. (January 1, 1995). "The Importance of the Nitrous Oxide Pathway to NOx in Lean-Premixed Combustion." ASME. J. Eng. Gas Turbines Power. January 1995; 117(1): 100–111. https://doi.org/10.1115/1.2812756
Download citation file:
Get Email Alerts
Temperature Dependence of Aerated Turbine Lubricating Oil Degradation from a Lab-Scale Test Rig
J. Eng. Gas Turbines Power
Multi-Disciplinary Surrogate-Based Optimization of a Compressor Rotor Blade Considering Ice Impact
J. Eng. Gas Turbines Power
Experimental Investigations on Carbon Segmented Seals With Smooth and Pocketed Pads
J. Eng. Gas Turbines Power
Related Articles
Advanced Catalytic Pilot for Low NO x Industrial Gas Turbines
J. Eng. Gas Turbines Power (October,2003)
FLOX ® Combustion at High Power Density and High Flame Temperatures
J. Eng. Gas Turbines Power (December,2010)
Steady and Dynamic Performance and Emissions of a Variable Geometry Combustor in a Gas Turbine Engine
J. Eng. Gas Turbines Power (October,2003)
NO x Emissions Modeling and Uncertainty From Exhaust-Gas-Diluted Flames
J. Eng. Gas Turbines Power (May,2016)
Related Proceedings Papers
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables