Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: hydraulic jump
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Fluids Engineering
Publisher: ASME
Article Type: Technical Briefs
J. Fluids Eng. January 2020, 142(1): 014503.
Paper No: FE-19-1242
Published Online: October 4, 2019
... possible flow regimes and their associated phenomena. The numerical model is based on the Reynolds-averaged Navier–Stokes (RANS) equations and the volume of fluid (VOF) method. Both numerical and experimental investigations provide visualization for the hydraulic jump, the blowback regime, and the full gas...
Journal Articles
Journal:
Journal of Fluids Engineering
Publisher: ASME
Article Type: Technical Briefs
J. Fluids Eng. March 2009, 131(3): 034502.
Published Online: February 4, 2009
...R. P. Kate; P. K. Das; Suman Chakraborty The present work attempts to investigate the effects of jet obliquity on the spatial patterns formed as a consequence of hydraulic jumps due to the impingement of circular liquid jets on continuously moving but nonaccelerating horizontal flat plates. Both...