Graphical Abstract Figure

Shock Vector Control of Space Vehicles

Graphical Abstract Figure

Shock Vector Control of Space Vehicles

Close modal

Abstract

Double divergent nozzles (DDNs) have been explored in the recent years to enhance the launch capabilities of space vehicles. A DDN is touted to be beneficial for launch vehicles over a single divergent nozzle (SDN) because of its ability to mitigate the generation of side loads. In order to maintain stability under varying nozzle pressure ratios (NPRs) and control the attitude for such systems, thrust vectoring on a DDN becomes very important, which still remains an open area of research. Shock vector control (SVC) is the simplest of all fluidic thrust vectoring (FTV) techniques, which is used to deflect the nozzle's primary flow by the generation of a shock wave. The present study is conducted on the SVC of a two-dimensional (2D) planar DDN. Three different DDNs are considered by varying the base nozzle and the extension nozzle lengths for a fixed value of the inflection Mach number (IMN). It is observed that the SVC performance of a DDN depends on the location of the inflection point, indicating that it is the function of the lengths of the base nozzle and the extension nozzle. In the high NPR regime, the pitch thrust vector angles are the highest for the DDN configuration in which the base and the extension nozzles have equal lengths. At the highest tested NPR = 10, this DDN configuration achieves a pitch thrust vector angle which is approximately 50.46% higher than a reference SDN of similar nozzle area expansion ratio.

References

1.
Gu
,
R.
, and
Xu
,
J.
,
2015
, “
Dynamic Experimental Investigations of a Bypass Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
137
(
8
), p.
084501
.10.1115/1.4029391
2.
Khare
,
S.
, and
Saha
,
U. K.
,
2021
, “
Rocket Nozzles: 75 Years of Research and Development
,”
Sadhana
,
46
(
2
), p.
76
.10.1007/s12046-021-01584-6
3.
Das
,
A. K.
,
Acharyya
,
K.
,
Mankodi
,
T. K.
, and
Saha
,
U. K.
,
2023
, “
Fluidic Thrust Vector Control of Aerospace Vehicles: State-of-the-Art Review and Future Prospects
,”
ASME J. Fluids Eng.
,
145
(
8
), p.
080801
.10.1115/1.4062109
4.
Forghany
,
F.
,
Rahni
,
M. T.
, and
Ghohieh
,
A. A.
,
2017
, “
Numerical Investigation of Optimization of Injection Angle Effects on Fluidic Thrust Vectoring
,”
J. Appl. Fluid Mech.
,
10
(
1
), pp.
157
167
.10.18869/acadpub.jafm.73.238.26519
5.
Yagle
,
P. J.
,
Miller
,
D. N.
,
Ginn
,
K. B.
, and
Hamstra
,
J. W.
,
2001
, “
Demonstration of Fluidic Throat Skewing for Thrust Vectoring in Structurally Fixed Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
502
507
.10.1115/1.1361109
6.
Forghany
,
F.
,
Rahni
,
M. T.
,
Ghohieh
,
A. A.
, and
Banazdeh
,
A.
,
2019
, “
Numerical Investigation of Injection Angle Effects on Shock Vector Control Performance
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
2
), pp.
405
417
.10.1177/0954410017733292
7.
Chi
,
S.
,
Gu
,
Y.
,
Gong
,
D.
, and
Li
,
L.
,
2022
, “
Investigation of Thrust Vector Angle Control Law Based on Micro-Turbojet Engine
,”
AIP Adv.
,
12
(
8
), p.
085224
.10.1063/5.0098654
8.
Ferlauto
,
F.
, and
Marsilio
,
R.
,
2017
, “
Numerical Investigation of the Dynamic Characteristics of a Dual-Throat-Nozzle for Fluidic Thrust-Vectoring
,”
AIAA J.
,
55
(
1
), pp.
86
98
.10.2514/1.J055044
9.
Wang
,
Y.
,
Xu
,
J.
, and
Huang
,
S.
,
2017
, “
Study of Starting Problem of Axisymmetric Divergent Dual Throat Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062602
.10.1115/1.4035230
10.
Wu
,
K.
,
Kim
,
T.
, and
Kim
,
H. D.
,
2021
, “
Sensitivity Analysis of Counterflow Thrust Vector Control With a Three-Dimensional Rectangular Nozzle
,”
ASCE J. Aerosp. Eng.
,
34
(
1
), p.
04020107
.10.1061/(ASCE)AS.1943-5525.0001228
11.
Sung
,
H. G.
, and
Heo
,
J. Y.
,
2012
, “
Fluidic Thrust Vector Control of Supersonic Jet Using Co-Flow Injection
,”
AIAA J. Propul. Power
,
28
(
4
), pp.
858
861
.10.2514/1.B34266
12.
Wu
,
K.
,
Kim
,
T. H.
, and
Kim
,
H. D.
,
2020
, “
Theoretical and Numerical Analyses of Aerodynamic Characteristics on Shock Vector Control
,”
ASCE J. Aerosp. Eng.
,
33
(
5
), p.
04020050
.10.1061/(ASCE)AS.1943-5525.0001169
13.
Zmijanovic
,
V.
,
Lago
,
V.
,
Sellam
,
M.
, and
Chpoun
,
A.
,
2014
, “
Thrust Shock Vector Control of an Axisymmetric Conical Supersonic Nozzle Via Secondary Transverse Gas Injection
,”
Shock Waves
,
24
(
1
), pp.
97
111
.10.1007/s00193-013-0479-y
14.
Zmijanovic
,
V.
,
Leger
,
L.
,
Depussay
,
E.
,
Sellam
,
M.
, and
Chpoun
,
A.
,
2016
, “
Experimental-Numerical Parametric Investigation of a Rocket Nozzle Secondary Injection Thrust Vectoring
,”
AIAA J. Propul. Power
,
32
(
1
), pp.
196
213
.10.2514/1.B35721
15.
Younes
,
K.
, and
Hickey
,
J. P.
,
2020
, “
Fluidic Thrust Shock-Vectoring Control: A Sensitivity Analysis
,”
AIAA J.
,
58
(
4
), pp.
1887
1890
.10.2514/1.J058922
16.
Viti
,
V.
,
Neel
,
R.
, and
Schetz
,
J. A.
,
2009
, “
Detailed Flow Physics of the Supersonic Jet Interaction Flow Field
,”
Phys. Fluids
,
21
(
4
), p.
046101
.10.1063/1.3112736
17.
Shi
,
J. W.
,
Wang
,
Z. X.
,
Zhou
,
L.
, and
Zhang
,
X. B.
,
2019
, “
Numerical Investigation on a New Concept of Shock Vector Control Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p.
091004
.10.1115/1.4043611
18.
Zou
,
X. H.
, and
Wang
,
Q.
,
2011
, “
The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics
,”
Int. J. Aerosp. Eng.
,
5
(
4
), pp.
827
833
.10.5281/zenodo.1078052
19.
Mangin
,
B.
,
Chopun
,
A.
, and
Jacquin
,
L.
,
2006
, “
Experimental and Numerical Study of the Fluidic Thrust Vectoring of a Two-Dimensional Supersonic Nozzle
,”
AIAA
Paper No. 2006-3666.10.2514/6.2006-3666
20.
Waithe
,
K. A.
, and
Deere
,
K. A.
,
2003
, “
Experimental and Computational Investigation of Multiple Injection Ports in a Convergent-Divergent Nozzle for Fluidic Thrust Vectoring
,”
AIAA
Paper No. 2003-3802.10.2514/6.2003-3802
21.
Deng
,
R.
, and
Kim
,
H. D.
,
2015
, “
A Study on the Thrust Vector Control Using a Bypass Flow Passage
,”
Proc. Inst. Mech. Eng., Part G
,
229
(
9
), pp.
1722
1729
.10.1177/0954410014558693
22.
Deng
,
R.
,
Setoguchi
,
T.
, and
Kim
,
H. D.
,
2016
, “
Large Eddy Simulation of Shock Vector Control Using Bypass Flow Passage
,”
Int. J. Heat Fluid Flow
,
62
, pp.
474
481
.10.1016/j.ijheatfluidflow.2016.08.011
23.
Arora
,
R.
, and
Vaidyanathan
,
A.
,
2015
, “
Experimental Investigation of Flow Through Planar Double Divergent Nozzles
,”
Acta Astronaut.
,
112
, pp.
200
216
.10.1016/j.actaastro.2015.03.020
24.
Foster
,
C. R.
, and
Cowles
,
F. B.
,
1949
, “
Experimental Study of Gas-Flow Separation in Overexpanded Exhaust Nozzles for Rocket Motors
,” ORDCIT Project Progress Report 4-103, Document ID 19630039654, JPL, California Institute of Technology, Pasadena, CA, Report No.
JPL-PR-4-103
.https://ntrs.nasa.gov/citations/19630039654
25.
George
,
J.
,
Nair
,
P. P.
,
Soman
,
S.
,
Suryan
,
A.
, and
Kim
,
H. D.
,
2021
, “
Visualization of Flow Through Planar Double Divergent Nozzles by Computational Method
,”
J. Visualization
,
24
(
4
), pp.
711
732
.10.1007/s12650-020-00729-9
26.
Nair
,
P. P.
,
Suryan
,
A.
, and
Kim
,
H. D.
,
2020
, “
Computational Study on Reducing Flow Asymmetry in Over-Expanded Planar Nozzle by Incorporating Double Divergence
,”
Aerosp. Sci. Technol.
,
100
, p.
105790
.10.1016/j.ast.2020.105790
27.
Das
,
A. K.
,
Acharyya
,
K.
,
Sarma
,
S.
, and
Saha
,
U. K.
,
2022
, “
Hybrid Double-Divergent Nozzle as a Novel Alternative for Future Rocket Engines
,”
AIAA J. Spacecr. Rockets
,
59
(
3
), pp.
761
772
.10.2514/1.A35207
28.
Verma
,
S. B.
, and
Haidn
,
O.
,
2009
, “
Surface Flow Studies of Restricted Shock Separation in a Thrust Optimized Parabolic Nozzle
,”
Shock Waves
,
19
(
5
), pp.
371
376
.10.1007/s00193-009-0211-0
29.
Davis
,
K.
,
Fortner
,
E.
,
Heard
,
M.
,
McCallum
,
H.
, and
Putzke
,
H.
,
2015
, “
Experimental and Computational Investigation of a Dual-Bell Nozzle
,”
AIAA
Paper No. 2015-0377.10.2514/6.2015-0377
30.
Verma
,
M.
,
Arya
,
N.
, and
De
,
A.
,
2020
, “
Investigation of Flow Characteristics Inside a Dual Bell Nozzle With and Without Film Cooling
,”
Aerosp. Sci. Technol.
,
99
, p.
105741
.10.1016/j.ast.2020.105741
31.
Sharjad
,
A. J.
,
Bijo
,
B. S.
, and
Ranjith
,
S. K.
,
2024
, “
Numerical Investigation on Secondary Injection and Thrust Vector Control in a Planar Double Divergent Nozzle
,”
Prog. Eng. Sci.
,
1
(
4
), p.
100017
.10.1016/j.pes.2024.100017
32.
ANSYS Inc.
,
2022
, “
ANSYS Fluent 2022 R2 Theory Guide
,” Version 2022 R2. ANSYS Inc. Canonsburg, PA.
33.
Wang
,
Y.
,
Xu
,
J.
,
Huang
,
S.
,
Jiang
,
J.
, and
Pan
,
R.
,
2020
, “
Design and Preliminary Analysis of the Variable Axisymmetric Divergent Bypass Dual Throat Nozzle
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061204
.10.1115/1.4045996
34.
Sellam
,
M.
,
Zmijanovic
,
V.
,
Leger
,
L.
, and
Chpoun
,
A.
,
2015
, “
Assessment of Gas Thermodynamic Characteristics on Fluid Thrust Vectoring Performance: Analytical, Experimental, and Numerical Study
,”
Int. J. Heat Fluid Flow
,
53
, pp.
156
166
.10.1016/j.ijheatfluidflow.2015.03.005
35.
Wu
,
K.
, and
Kim
,
H. D.
,
2019
, “
Numerical Study on The Shock Vector Control in a Rectangular Supersonic Nozzle
,”
Proc. Inst. Mech. Eng. Part G
,
233
(
13
), pp.
4943
4965
.10.1177/0954410019834133
36.
Deng
,
R.
,
Kong
,
F.
, and
Kim
,
H. D.
,
2014
, “
Numerical Simulation of Fluidic Thrust Vectoring in an Axisymmetric Supersonic Nozzle
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
4979
4987
.10.1007/s12206-014-1119-x
37.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
38.
Gruber
,
M. R.
,
Nejad
,
A. S.
,
Chen
,
T. H.
, and
Dutton
,
J. C.
,
1997
, “
Compressibility Effects in Supersonic Transverse Injection Flowfields
,”
Phys. Fluids
,
9
(
5
), pp.
1448
1461
.10.1063/1.869257
39.
Rana
,
Z. A.
,
Thornber
,
B.
, and
Drikakis
,
D.
,
2011
, “
Transverse Jet Injection Into a Supersonic Turbulent Cross-Flow
,”
Phys. Fluids
,
23
(
4
), p.
046103
.10.1063/1.3570692
40.
Jintu
,
J. K.
, and
Kim
,
H. D.
,
2023
, “
Oscillatory Behaviors of Multiple Shock Waves to Upstream Disturbances
,”
Phys. Fluids
,
35
(
5
), p.
056113
.10.1063/5.0147819
41.
Kumar
,
P. A.
,
Kumar
,
S. M. A.
,
Mitra
,
A. S.
, and
Rathakrishnan
,
E.
,
2019
, “
Empirical Scaling Analysis of Supersonic Jet Control Using Steady Fluidic Injection
,”
Phys. Fluids
,
31
(
5
), p.
056107
.10.1063/1.5096389
42.
Shi
,
J. W.
,
Wang
,
Z. X.
,
Zhou
,
L.
, and
Zhang
,
X. B.
,
2016
, “
Investigation on Flow-Field Characteristics of Shock Vector Controlling Nozzle Based on Confined Transverse Injection
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
101502
.10.1115/1.4033140
43.
Erdem
,
E.
, and
Kontis
,
K.
,
2010
, “
Numerical and Experimental Investigation of Transverse Injection Flows
,”
Shock Waves
,
20
(
2
), pp.
103
118
.10.1007/s00193-010-0247-1
44.
Chen
,
J. L.
, and
Liao
,
Y. H.
,
2020
, “
Parametric Study on Thrust Vectoring With a Secondary Injection in a Convergent-Divergent Nozzle
,”
ASCE J. Aerosp. Eng.
,
33
(
4
), p.
04020020
.10.1061/(ASCE)AS.1943-5525.0001136
45.
Das
,
A. K.
,
Mankodi
,
T. K.
, and
Saha
,
U. K.
,
2024
, “
Fluidic Thrust Vectoring on an Altitude-Adaptive Double-Divergent Nozzle Using a Bypass Passage
,”
ASME
Paper No. GT2024-128990.10.1115/GT2024-128990
You do not currently have access to this content.