Abstract

Wind speed forecasting plays a pivotal role in power prediction, daily operations, and optimal scheduling of wind farms. However, accurately predicting wind speed remains challenging due to data uncertainties and the inherent randomness of wind resources. This paper introduces a novel wind speed forecasting method by combining Bayesian discrete wavelet packet thresholding (BDWPT) into Gaussian Process Regression (GPR). The BDWPT method is first employed to adaptively remove noise from wind speed data, retaining the main trend characteristics of the time series while removing redundant information. The GPR model is then utilized to capture the remaining randomness and effectively predict future probabilistic trends in wind speed. Comparative studies using real-world wind farm data demonstrate the advantages of the proposed method in both one-step and multistep forecasting scenarios, showcasing its potential to enhance turbine design and power management under uncertain conditions.

References

1.
Hutchinson
,
M.
, and
Z. F.
,
2023
, “
Global Wind Report 2023
,” Global Wind Energy Council, Bruxelles, Belgium, accessed Dec. 19, 2024, https://gwec.net/globalwindreport2023/#download
2.
Yuan
,
X.
,
Tan
,
Q.
,
Lei
,
X.
,
Yuan
,
Y.
, and
Wu
,
X.
,
2017
, “
Wind Power Prediction Using Hybrid Autoregressive Fractionally Integrated Moving Average and Least Square Support Vector Machine
,”
Energy
,
129
, pp.
122
137
.10.1016/j.energy.2017.04.094
3.
De Giorgi
,
M. G.
,
Ficarella
,
A.
, and
Tarantino
,
M.
,
2011
, “
Assessment of the Benefits of Numerical Weather Predictions in Wind Power Forecasting Based on Statistical Methods
,”
Energy
,
36
(
7
), pp.
3968
3978
.10.1016/j.energy.2011.05.006
4.
Dayal
,
K. K.
,
Bellon
,
G.
,
Cater
,
J. E.
,
Kingan
,
M. J.
, and
Sharma
,
R. N.
,
2021
, “
High-Resolution Mesoscale Wind-Resource Assessment of Fiji Using the Weather Research and Forecasting (WRF) Model
,”
Energy
,
232
, p.
121047
.10.1016/j.energy.2021.121047
5.
Salcedo-Sanz
,
S.
,
Pérez-Bellido
,
Á. M.
,
Ortiz-García
,
E. G.
,
Portilla-Figueras
,
A.
,
Prieto
,
L.
, and
Paredes
,
D.
,
2009
, “
Hybridizing the Fifth Generation Mesoscale Model With Artificial Neural Networks for Short-Term Wind Speed Prediction
,”
Renewable Energy
,
34
(
6
), pp.
1451
1457
.10.1016/j.renene.2008.10.017
6.
Yang
,
D.
,
Wang
,
W.
, and
Hong
,
T.
,
2022
, “
A Historical Weather Forecast Dataset From the European Centre for Medium-Range Weather Forecasts (Ecmwf) for Energy Forecasting
,”
Sol. Energy
,
232
, pp.
263
274
.10.1016/j.solener.2021.12.011
7.
Wang
,
J.
, and
Li
,
Y.
,
2018
, “
Multi-Step Ahead Wind Speed Prediction Based on Optimal Feature Extraction, Long Short Term Memory Neural Network and Error Correction Strategy
,”
Appl. Energy
,
230
, pp.
429
443
.10.1016/j.apenergy.2018.08.114
8.
Erdem
,
E.
, and
Shi
,
J.
,
2011
, “
Arma Based Approaches for Forecasting the Tuple of Wind Speed and Direction
,”
Appl. Energy
,
88
(
4
), pp.
1405
1414
.10.1016/j.apenergy.2010.10.031
9.
Mauricio
,
J. A.
,
1995
, “
Exact Maximum Likelihood Estimation of Stationary Vector Arma Models
,”
J. Am. Stat. Assoc.
,
90
(
429
), pp.
282
291
.10.1080/01621459.1995.10476511
10.
Liang
,
C.
,
Liu
,
Y.
,
Zhou
,
J.
,
Yan
,
J.
, and
Lu
,
Z.
,
2021
, “
Wind Speed Prediction at Multi-Locations Based on Combination of Recurrent and Convolutional Neural Networks
,”
Power Syst. Technol.
,
45
(
2
), pp.
534
542
.10.13335/j.1000-3673.pst.2020.0767
11.
Wei
,
Y.
, and
Xu
,
X.
,
2019
, “
Ultra-Short-Term Wind Speed Prediction Based on Lstm Long and Short-Term Memory Network
,”
J. Electron. Meas. Instrum.
,
33
(
2
), pp.
64
71
.https://link.oversea.cnki.net/doi/10.13382/j.jemi.B1801747
12.
Zhaoyu
,
L.
,
Qian
,
A.
,
Yufan
,
Z.
, and
Fei
,
X.
,
2019
, “
A Lstm Neural Network Method Based on Attention Mechanism for Ultra Short-Term Load Forecasting
,”
Distrib. Util.
,
36
(
1
), pp.
17
22
.https://link.oversea.cnki.net/doi/10.19421/j.cnki.1006-6357.2019.01.003
13.
Gallego-Castillo
,
C.
,
Bessa
,
R.
,
Cavalcante
,
L.
, and
Lopez-Garcia
,
O.
,
2016
, “
On-Line Quantile Regression in the Rkhs (Reproducing Kernel Hilbert Space) for Operational Probabilistic Forecasting of Wind Power
,”
Energy
,
113
, pp.
355
365
.10.1016/j.energy.2016.07.055
14.
Thorarinsdottir
,
T. L.
, and
Gneiting
,
T.
,
2010
, “
Probabilistic Forecasts of Wind Speed: Ensemble Model Output Statistics by Using Heteroscedastic Censored Regression
,”
J. R. Stat. Soc. Ser. A: Stat. Soc.
,
173
(
2
), pp.
371
388
.10.1111/j.1467-985X.2009.00616.x
15.
Errouissi
,
R.
,
Cardenas-Barrera
,
J.
,
Meng
,
J.
,
Castillo-Guerra
,
E.
,
Gong
,
X.
, and
Chang
,
L.
,
2015
, “
Bootstrap Prediction Interval Estimation for Wind Speed Forecasting
,”
IEEE Energy Conversion Congress and Exposition (ECCE),
Montreal, QC, Canada, Sept. 20–24, pp.
1919
1924
.10.1109/ECCE.2015.7309931
16.
Yan
,
J.
,
Liu
,
Y.
,
Han
,
S.
,
Wang
,
Y.
, and
Feng
,
S.
,
2015
, “
Reviews on Uncertainty Analysis of Wind Power Forecasting
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1322
1330
.10.1016/j.rser.2015.07.197
17.
Wei
,
W.
,
Wu
,
J.
,
Yu
,
Y.
,
Niu
,
T.
, and
Deng
,
X.
,
2021
, “
Uncertainty Quantification Analysis of Wind Power: A Data-Driven Monitoring-Forecasting Framework
,”
IEEE Access
,
9
, pp.
84403
84416
.10.1109/ACCESS.2021.3086583
18.
Lin
,
Z.
,
Liu
,
X.
, and
Collu
,
M.
,
2020
, “
Wind Power Prediction Based on High-Frequency Scada Data Along With Isolation Forest and Deep Learning Neural Networks
,”
Int. J. Electr. Power Energy Syst.
,
118
, p.
105835
.10.1016/j.ijepes.2020.105835
19.
Wang
,
X.
,
Li
,
Z.
,
Zhang
,
J.
,
Liu
,
H.
,
Qiu
,
C.
, and
Cai
,
X.
,
2019
, “
An Lstm-Attention Wind Power Prediction Method Considering Multiple Factors
,” 8th Renewable Power Generation Conference (
RPG 2019
), Shanghai, China, Oct. 24–25, pp.
1
7
.10.1049/cp.2019.0597
20.
Aghajani
,
A.
,
Kazemzadeh
,
R.
, and
Ebrahimi
,
A.
,
2016
, “
A Novel Hybrid Approach for Predicting Wind Farm Power Production Based on Wavelet Transform, Hybrid Neural Networks and Imperialist Competitive Algorithm
,”
Energy Convers. Manage.
,
121
, pp.
232
240
.10.1016/j.enconman.2016.05.024
21.
Chitsaz
,
H.
,
Amjady
,
N.
, and
Zareipour
,
H.
,
2015
, “
Wind Power Forecast Using Wavelet Neural Network Trained by Improved Clonal Selection Algorithm
,”
Energy Convers. Manage.
,
89
, pp.
588
598
.10.1016/j.enconman.2014.10.001
22.
Abdoos
,
A. A.
,
2016
, “
A New Intelligent Method Based on Combination of Vmd and Elm for Short Term Wind Power Forecasting
,”
Neurocomputing
,
203
, pp.
111
120
.10.1016/j.neucom.2016.03.054
23.
Wang
,
Y.
, and
Wu
,
L.
,
2016
, “
On Practical Challenges of Decomposition-Based Hybrid Forecasting Algorithms for Wind Speed and Solar Irradiation
,”
Energy
,
112
, pp.
208
220
.10.1016/j.energy.2016.06.075
24.
Xu
,
S.
,
Jiang
,
X.
,
Huang
,
J.
,
Yang
,
S.
, and
Wang
,
X.
,
2016
, “
Bayesian Wavelet Pca Methodology for Turbomachinery Damage Diagnosis Under Uncertainty
,”
Mech. Syst. Signal Process.
,
80
, pp.
1
18
.10.1016/j.ymssp.2016.04.031
25.
Jiang
,
X.
,
Mahadevan
,
S.
, and
Adeli
,
H.
,
2007
, “
Bayesian Wavelet Packet Denoising for Structural System Identification
,”
Struct. Control Health Monit.: Official J. Int. Assoc. Struct. Control Monit.
,
14
(
2
), pp.
333
356
.10.1002/stc.161
26.
Zhang
,
Z.
,
Ye
,
L.
,
Qin
,
H.
,
Liu
,
Y.
,
Wang
,
C.
,
Yu
,
X.
,
Yin
,
X.
, and
Li
,
J.
,
2019
, “
Wind Speed Prediction Method Using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression
,”
Appl. Energy
,
247
, pp.
270
284
.10.1016/j.apenergy.2019.04.047
You do not currently have access to this content.