Abstract

In centrifugal pumps operating in sediment-laden rivers, sediment erosion usually occurs on the overflow components, adversely affecting their efficiency and operation. This study focuses on severe sediment erosion at the blade outlet of a centrifugal pump. Here, we present a method to mitigate this severe sediment erosion. The proposed method incorporates a passive flow control strategy utilizing biomimetic structures. The underlying mechanisms contributing to severe erosion at the blade outlet, as well as the effects of the proposed method on pump erosion and performance, are investigated through numerical simulations and experiments. The results indicate that flow separation, accompanied by a recirculation vortex, is responsible for the severe erosion at the blade outlet. The recirculation vortex traps particles, leading to repeated impacts of particles on the blade. The biomimetic structures effectively inhibit the formation of flow separation, thereby reducing severe erosion at the blade outlet. In the optimal configuration, the flow separation region is reduced by 40%, and the severe erosion region decreases by 8%. Furthermore, the biomimetic structures have a negligible impact on pump performance because of their diminutive size.

References

1.
Kalaiselvan
,
A. S. V.
,
Subramaniam
,
U.
,
Shanmugam
,
P.
, and
Hanigovszki
,
N.
,
2016
, “
A Comprehensive Review on Energy Efficiency Enhancement Initiatives in Centrifugal Pumping System
,”
Appl. Energy
,
181
, pp.
495
513
.10.1016/j.apenergy.2016.08.070
2.
Zhang
,
W.
,
An
,
L.
,
Li
,
X.
,
Chen
,
F.
,
Sun
,
L.
,
Wang
,
X.
, and
Cai
,
J.
,
2022
, “
Adjustment Method and Energy Consumption of Centrifugal Pump Based on Intelligent Optimization Algorithm
,”
Energy Rep.
,
8
, pp.
12272
12281
.10.1016/j.egyr.2022.09.031
3.
Shen
,
Z.
,
Chu
,
W.
,
Li
,
X.
, and
Dong
,
W.
,
2019
, “
Sediment Erosion in the Impeller of a Double-Suction Centrifugal Pump—A Case Study of the Jingtai Yellow River Irrigation Project, China
,”
Wear
,
422–423
, pp.
269
279
.10.1016/j.wear.2019.01.088
4.
Banka
,
J.
, and
Rai
,
A. K.
,
2024
, “
Erosion and Flow Visualization in Centrifugal Slurry Pumps: A Comprehensive Review of Recent Developments and Future Outlook
,”
Part. Sci. Technol.
,
42
(
3
), pp.
427
459
.10.1080/02726351.2023.2259336
5.
Duan
,
A.
,
Lin
,
Z.
,
Chen
,
D.
, and
Li
,
Y.
,
2024
, “
A Review on the Hydraulic Performance and Erosion Wear Characteristic of the Centrifugal Slurry Pump
,”
Particuology
,
95
, pp.
370
392
.10.1016/j.partic.2024.10.006
6.
Neilson
,
J.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.10.1016/0043-1648(68)90591-7
7.
Mansouri
,
A.
,
Khanouki
,
H.
,
Shirazi
,
S.
, and
McLaury
,
B.
,
2016
, “
Particle Tracking Velocimetry (PTV) Measurement of Abrasive Microparticle Impact Speed and Angle in Both Air-Sand and Slurry Erosion Testers
,”
ASME
Paper No. FEDSM2016-7768.10.1115/FEDSM2016-7768
8.
Zhao
,
Z.
,
Guo
,
Z.
,
Feng
,
J.
, and
Qian
,
Z.
,
2024
, “
Effect of Mesh Size on Particle Tracking With Correction for Submerged Jet Impingement
,”
Powder Technol.
,
431
, p.
119080
.10.1016/j.powtec.2023.119080
9.
Song
,
X.
,
Yao
,
R.
,
Shen
,
Y.
,
Bi
,
H.
,
Zhang
,
Y.
,
Du
,
L.
, and
Wang
,
Z.
,
2021
, “
Numerical Prediction of Erosion Based on the Solid-Liquid Two-Phase Flow in a Double-Suction Centrifugal Pump
,”
J. Mar. Sci. Eng.
,
9
(
8
), p.
836
.10.3390/jmse9080836
10.
Chen
,
M.
,
Tan
,
L.
,
Fan
,
H.
,
Wang
,
C.
, and
Liu
,
D.
,
2022
, “
Solid-Liquid Multiphase Flow and Erosion Characteristics of a Centrifugal Pump in the Energy Storage Pump Station
,”
J. Energy Storage
,
56
, p.
105916
.10.1016/j.est.2022.105916
11.
Zhang
,
Y.
,
Zhao
,
Z.
, and
Qian
,
Z.
,
2024
, “
Analysis of Sediment Erosion at Suction Side of Double Suction Centrifugal Pump Blade
,”
Trans. Chin. Soc. Agric. Mach.
,
55
(
2
), pp.
202
207
.https://link.oversea.cnki.net/doi/10.6041/j.issn.1000-1298.2024.02.019
12.
Qian
,
Z.
,
Zhao
,
Z.
,
Guo
,
Z.
,
Thapa
,
B. S.
, and
Thapa
,
B.
,
2020
, “
Erosion Wear on Runner of Francis Turbine in Jhimruk Hydroelectric Center
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
094502
.10.1115/1.4047230
13.
Chitrakar
,
S.
,
Neopane
,
H. P.
, and
Dahlhaug
,
O. G.
,
2016
, “
Study of the Simultaneous Effects of Secondary Flow and Sediment Erosion in Francis Turbines
,”
Renewable Energy
,
97
, pp.
881
891
.10.1016/j.renene.2016.06.007
14.
Thapa
,
B. S.
,
Dahlhaug
,
O. G.
, and
Thapa
,
B.
,
2017
, “
Sediment Erosion Induced Leakage Flow From Guide Vane Clearance Gap in a Low Specific Speed Francis Turbine
,”
Renewable Energy
,
107
, pp.
253
261
.10.1016/j.renene.2017.01.045
15.
Wang
,
K.
,
Liu
,
H.
,
Wang
,
L.
,
Guo
,
P.
,
Wang
,
Y.
, and
Yang
,
J.
,
2024
, “
Effect of Particle Size on Vortex Structure and Erosion Behavior of Semi-Open Centrifugal Pump
,”
Energy
,
293
, p.
130576
.10.1016/j.energy.2024.130576
16.
Qian
,
Z.
,
Wang
,
Z.
,
Zhang
,
K.
, and
Wu
,
Y.
,
2014
, “
Analysis of Silt Abrasion and Blade Shape Optimization in a Centrifugal Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
228
, pp.
585
591
.10.1177/0957650914530294
17.
Qian
,
Z.
,
Wang
,
Y.
, and
Xie
,
H.
,
2012
, “
Influence of Back Blade on Sediment Erosion of Impeller Ring in Double Suction Pump
,”
J. Hydroelectr. Eng.
,
31
, pp.
232
237
.
18.
Zhang
,
Z.
,
Li
,
J.
,
Guan
,
T.
,
Li
,
Y.
, and
Zhang
,
L.
,
2023
, “
Study on Optimization of Sediment Erosion Performance for Centrifugal Pump Impeller Based on Inverse Design Method
,”
J. Hydraul. Eng.
,
54
(
12
), pp.
1452
1463
.https://link.oversea.cnki.net/doi/10.13243/j.cnki.slxb.20230472
19.
Xiao
,
Y.
,
Guo
,
B.
,
Ahn
,
S.-H.
,
Luo
,
Y.
,
Wang
,
Z.
,
Shi
,
G.
, and
Li
,
Y.
,
2019
, “
Slurry Flow and Erosion Prediction in a Centrifugal Pump After Long-Term Operation
,”
Energies
,
12
(
8
), p.
1523
.10.3390/en12081523
20.
Tarodiya
,
R.
, and
Gandhi
,
B. K.
,
2017
, “
Hydraulic Performance and Erosive Wear of Centrifugal Slurry Pumps—A Review
,”
Powder Technol.
,
305
, pp.
27
38
.10.1016/j.powtec.2016.09.048
21.
Choi
,
H.
,
Park
,
H.
,
Sagong
,
W.
, and
Lee
,
S.-I.
,
2012
, “
Biomimetic Flow Control Based on Morphological Features of Living Creaturesa
,”
Phys. Fluids
,
24
(
12
), p.
121302
.10.1063/1.4772063
22.
Rose
,
J. B. R.
,
Natarajan
,
S. G.
, and
Gopinathan
,
V.
,
2021
, “
Biomimetic Flow Control Techniques for Aerospace Applications: A Comprehensive Review
,”
Rev. Environ. Sci. Biotechnol.
,
20
(
3
), pp.
645
677
.10.1007/s11157-021-09583-z
23.
Xu
,
T.
,
Luo
,
Y.
,
Hou
,
Z. X.
,
Huang
,
Q.
,
Cao
,
Y.
, and
Pan
,
G.
,
2023
, “
Research on Passive Deformation and Hydrodynamic Performance of a Biomimetic Cownose Ray in Gliding Motion Through Fluid-Structure Interaction Analysis
,”
Phys. Fluids
,
35
(
12
), p.
121905
.10.1063/5.0174659
24.
Qian
,
Z.
,
Dong
,
J.
,
Guo
,
Z.
,
Wang
,
Z.
, and
Wang
,
F.
,
2016
, “
Study of a Bionic Anti-Erosion Blade in a Double Suction Centrifugal Pump
,”
ASME
Paper No. FEDSM2016-7627.10.1115/FEDSM2016-7627
25.
Dong
,
J.
,
Qian
,
Z.
,
Thapa
,
B. S.
,
Thapa
,
B.
, and
Guo
,
Z.
,
2019
, “
Alternative Design of Double-Suction Centrifugal Pump to Reduce the Effects of Silt Erosion
,”
Energies
,
12
(
1
), p.
158
.10.3390/en12010158
26.
Zhao
,
Z.
,
Guo
,
Z.
, and
Qian
,
Z.
,
2024
, “
Passive Flow Control of a Francis Turbine Operating in Sand-Laden Rivers for Mitigating Sediment Erosion
,”
Phys. Fluids
,
36
(
9
), p.
093327
.10.1063/5.0227300
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
28.
Li
,
D.
,
Qin
,
Y.
,
Zuo
,
Z.
,
Wang
,
H.
,
Liu
,
S.
, and
Wei
,
X.
,
2019
, “
Numerical Simulation on Pump Transient Characteristic in a Model Pump Turbine
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111101
.10.1115/1.4043496
29.
Jia
,
X.
,
Lv
,
H.
, and
Zhu
,
Z.
,
2023
, “
Research on the Influence of Impeller Tip Clearance on the Internal Flow Loss of Axial Circulating Pump Under Unpowered Driven Condition
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021202
.10.1115/1.4055990
30.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
31.
Amsden
,
A. A.
,
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1987
, “
The KIVA-II Computer Program for Transient Multidimensional Chemically Reactive Flows With Sprays
,”
SAE
Paper No. 872072.10.4271/872072
32.
Auton
,
T. R.
,
Hunt
,
J. C. R.
, and
Prud'Homme
,
M.
,
1988
, “
The Force Exerted on a Body in Inviscid Unsteady Non-Uniform Rotational Flow
,”
J. Fluid Mech.
,
197
, pp.
241
257
.10.1017/S0022112088003246
33.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
34.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
35.
Michaelides
,
E. E.
,
2003
, “
Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles, and Drops—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
209
238
.10.1115/1.1537258
36.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
37.
Edwards
,
J. K.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
Evaluation of Alternative Pipe Bend Fittings in Erosive Service
,”
ASME
Paper No. FEDSM2000-11245.10.1115/FEDSM2000-11245
38.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2017
, “
The Effect of Sub-Models and Parameterizations in the Simulation of Abrasive Jet Impingement Tests
,”
Wear
,
370–371
, pp.
59
72
.10.1016/j.wear.2016.10.022
39.
Xie
,
Z.
,
Cao
,
X.
,
Zhang
,
J.
,
Darihaki
,
F.
,
Karimi
,
S.
,
Xiong
,
N.
, and
Li
,
Q.
,
2021
, “
Effect of Cell Size on Erosion Representation and Recommended Practices in CFD
,”
Powder Technol.
,
389
, pp.
522
535
.10.1016/j.powtec.2021.05.066
40.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2018
, “
Application and Experimental Validation of a CFD Based Erosion Prediction Procedure for Jet Impingement Geometry
,”
Wear
,
394–395
, pp.
11
19
.10.1016/j.wear.2017.10.001
41.
Darihaki
,
F.
,
Zhang
,
J.
, and
Shirazi
,
S. A.
,
2019
, “
Solid Particle Erosion in Gradual Contraction Geometry for a Gas-Solid System
,”
Wear
,
426–427
, pp.
643
651
.10.1016/j.wear.2019.01.106
42.
Lighthill
,
M.
,
1963
,
Attachment and Separation in Three-Dimensional Flows
,
Oxford University Press
,
Oxford, UK
.
43.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the Summer Program
, New York, Nov. 20--22, pp. 193--209.https://web.stanford.edu/group/ctr/Summer/201306111537.pdf
You do not currently have access to this content.