Abstract

The clearance between impeller disk and the adjacent casing of the regenerative hydrogen pump constitutes a pair of important dynamic seals that affect pump performance and disk force. In this work, a regenerative hydrogen pump designed for the anode circulation loop of proton exchange membrane (PEM) fuel cell vehicle is studied. The method of experimental measurement and numerical simulation is used to study the flow field when ring tongue number is 0–2, clearance width is 0.04 mm–0.24 mm, and clearance outlet pressure decreases to 1 atm at most. The effects of these parameters on pump pressure rise, leakage, axial force, and disk friction power are analyzed. Summarized various clearance schemes with the same pressure rise or leakage flowrate. Analyzed the flow fields of main flow channels (side channel and impeller passage) and clearance with the same leakage flowrate. The objective of these works is to explore the impact of clearance parameters on pump performance, thereby identifying a potential optimal solution and offering a reference for design. Additionally, the flow field analysis elucidates the main characteristics of clearance flow and the variations of these characteristics as the parameters are changed.

References

1.
Franzese
,
N.
,
Dincer
,
I.
, and
Sorrentino
,
M.
,
2020
, “
A New Multigenerational Solar-Energy Based System for Electricity, Heat and Hydrogen Production
,”
Appl. Therm. Eng.
,
171
, p.
115085
.10.1016/j.applthermaleng.2020.115085
2.
Seive
,
M.
,
Nguyen Duc
,
J.
, and
Patrice
,
F.
,
2022
, “
Stability of Hydrogen Turbopump Rotor Shaft Axially Self-Balanced
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
091206
.10.1115/1.4054025
3.
Chen
,
J.
,
Xiao
,
L.
,
Wu
,
Y.
,
Gao
,
X.
,
Chen
,
H.
,
Xie
,
J.
, and
Shao
,
S.
,
2022
, “
Dynamic Simulation of the Potential of Integrating a Turbo-Expander in a Hydrogen Refueling Station
,”
Appl. Therm. Eng.
,
202
, p.
117889
.10.1016/j.applthermaleng.2021.117889
4.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2015
, “
Benefits of Nonaxisymmetric Endwall Contouring in a Compressor Cascade With a Tip Clearance
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051101
.10.1115/1.4028996
5.
Lei
,
S.
,
Ma
,
H.
,
Huajie
,
W.
, and
Tianyou
,
W.
,
2024
, “
Effect of Tip Gap Size on the Tip Flow Structure and Turbulence Generation in a Low Reynolds Number Compressor Cascade
,”
ASME J. Fluids Eng.
,
146
(
11
), p.
111202
.10.1115/1.4065295
6.
Xi
,
J.
,
Si
,
X.
,
Longest
,
P. W.
, and
Gad-el-Hak
,
M.
,
2007
, “
Curvature Law of the Wall for Swirling Axial Flows in Rotating Machinery
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
169
178
.10.1115/1.2409360
7.
Yabin
,
L.
, and
Lei
,
T.
,
2020
, “
Theoretical Prediction Model of Tip Leakage Vortex in a Mixed Flow Pump With Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021203
.10.1115/1.4044982
8.
Yang
,
Y.
,
Ling
,
Z.
,
Ling
,
B.
,
Hong
,
X.
,
Wanning
,
L.
,
Weidong
,
S.
, and
Hongliang
,
W.
,
2022
, “
Numerical Investigation of Tip Clearance Effects on the Performance and Flow Pattern Within a Sewage Pump
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081202
.10.1115/1.4053649
9.
Yumeno
,
I.
,
Kento
,
S.
,
Kazuyoshi
,
M.
,
Masamichi
,
I.
, and
Takeshi
,
S.
,
2021
, “
Investigation of Flow Structure in a Narrow Clearance of a Low Specific Speed Centrifugal Impeller
,”
ASME J. Fluids Eng.
,
143
(
12
), p.
121109
.10.1115/1.4052240
10.
Abhay
,
P.
,
Marie
,
K.
,
Adolfo
,
D.
, and
Gerald
,
M.
,
2020
, “
Effect of Leakage Flow Path Wear on Axial Thrust in Downhole Electrical Submersible Pump Unit
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051202
.10.1115/1.4045571
11.
Sorin-Cristian
,
V.
,
Carmine
,
P.
,
Nigel
,
M.
,
Tomas
,
K.
,
Tom
,
R.
, and
Daniele
,
D.
,
2019
, “
The Percolation of Liquid Through a Compliant Seal—An Experimental and Theoretical Study
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031101
.10.1115/1.4041120
12.
Jürgen
,
S.
,
Helmut
,
B.
, and
Helmut
,
J.
,
2017
, “
Analysis of the Leakage Behavior of Francis Turbines and Its Impact on the Hydraulic Efficiency—A Validation of an Analytical Model Based on Computational Fluid Dynamics Results
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021106
.10.1115/1.4034865
13.
Yan
,
L.
,
Min
,
Z.
,
Tianlong
,
Z.
,
Mengchao
,
Z.
, and
Ying
,
H.
,
2016
, “
Effect of Winglet-Shroud Tip With Labyrinth Seals on Aerodynamic Performance of a Linear Turbine Cascade
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071103
.10.1115/1.4032752
14.
Raheel
,
M.
, and
Engeda
,
A.
,
2002
, “
Current Status, Design and Performance Trends for the Regenerative Flow Compressors and Pumps
,”
ASME
Paper No. IMECE2002-39594.10.1115/IMECE2002-39594
15.
Engeda
,
A.
, and
Raheel
,
M.
,
2003
, “
Theory and Design of the Regenerative Flow Compressor
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, pp.
1
9
.
16.
Raheel
,
M.
, and
Engeda
,
A.
,
2005
, “
Performance Characteristics of Regenerative Flow Compressors for Natural Gas Compression Application
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
7
14
.10.1115/1.1860569
17.
Song
,
J.
,
Raheel
,
M.
, and
Engeda
,
A.
,
2003
, “
A Compressible Flow Theory for Regenerative Compressors With Aerofoil Blades
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
11
), pp.
1241
1257
.10.1243/095440603771665269
18.
Engeda
,
A.
, and
Elkacimi
,
Y.
,
2008
, “
A Regenerative Flow Compressor as a Secondary Air Pump for Engine Emission Control
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
9
), pp.
1707
1715
.10.1243/09544062JMES958
19.
Kang
,
S.
, and
Ryu
,
S.
,
2009
, “
Reynolds Number Effects on the Performance Characteristic of a Small Regenerative Pump
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061104
.10.1115/1.3026629
20.
Badami
,
M.
, and
Mura
,
M.
,
2010
, “
Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
51
(
3
), pp.
553
560
.10.1016/j.enconman.2009.10.022
21.
Badami
,
M.
, and
Mura
,
M.
,
2011
, “
Setup and Validation of a Regenerative Compressor Model Applied
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2157
2164
.10.1016/j.enconman.2010.10.044
22.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Comparison Between 3D and 1D Simulations of a Regenerative Blower for Fuel
,”
Energy Convers. Manage.
,
55
, pp.
93
100
.10.1016/j.enconman.2011.10.003
23.
Chan
,
L.
, and
Gwon
,
H.
,
2014
, “
The Design, Performance and CFD Analyses of Regenerative Blower Used for Fuel Cell System
,”
Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
, Vienna, Austria, Aug. 28–30, pp.
751
755
.
24.
Sixsmith
,
H.
, and
Altmann
,
H.
,
1977
, “
A Regenerative Compressor
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
637
647
.10.1115/1.3439291
25.
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2005
, “
Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
7
), pp.
567
581
.10.1243/095765005X31252
26.
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2006
, “
Hydraulic Design of a Regenerative Flow Pump for an Artificial Heart Pump
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
7
), pp.
699
706
.10.1243/09576509JPE211
27.
Cantini
,
G.
, and
Salvadori
,
S.
,
2021
, “
Numerical Characterization of the Performance Curve of a Regenerative Pump-As-Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051001
.10.1115/1.4050156
28.
Cantini
,
G.
,
Salvadori
,
S.
,
Insinna
,
M.
,
Peroni
,
G.
,
Simon
,
G.
,
Griffini
,
D.
, and
Squarcini
,
R.
,
2019
, “
Development of a One-Dimensional Model for the Prediction of Leakage Flows in Rotating Cavities Under Non-Uniform Tangential Pressure Distribution
,”
Int. J. Turbomach. Propul. Power
,
4
(
3
), p.
19
.10.3390/ijtpp4030019
29.
Tao
,
Y.
,
Shengke
,
W.
, and
Jinju
,
S.
,
2025
, “
A Comparative Study on the Prediction of Hydrogen, Nitrogen, and Water Vapor of Regenerative Hydrogen Pump With Different Turbulence Models
,”
ASME J. Fluids Eng.
,
147
(
2
), p. 021203.10.1115/1.4066644
You do not currently have access to this content.