Abstract

The use of turning vanes spans multiple engineering disciplines such as aerospace, ocean, and biomedical to effectively turn an otherwise uniform flowfield and achieve desired downstream flow angles. The presented work investigates the wake dynamics generated by sets of complex turning vanes which contained nonaxisymmetric geometries, spanwise variations in turning angle, and multiple vane junctions. Time-resolved particle image velocimetry (TR-PIV) measurements were performed to collect three-component velocity data downstream of the vane pack geometries. As the vanes contained blunt trailing edges (TEs), large-scale periodic structures (von Kármán vortices) dominated the unsteady wakes. Two postprocessing methods, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD), were employed to extract the wake energy or enstrophy content, corresponding spatial modes, and associated frequencies. This was completed for various parameters such as Reynolds number, vane turning angle, and vane trailing edge thickness. Spatial POD analyses showed that zero-turning vanes contained similar dynamics to that of a circular cylinder, and the total wake energy distributions were affected by freestream velocity. A spectral POD analysis in the wake of vane junctions found that the junction flow contained significant coherent content and gave some insight into the mean flow. Finally, vane parameters such as turning angle and TE thickness were found to play a large role in modifying the enstrophy content of the large-scale shedding modes.

References

1.
Pinckney
,
S. Z.
,
1965
, “
Use of a Single Turning Vane to Eliminate Flow Separation in a Space-Limited 90° Intake Elbow of an Axial-Flow Compressor
,”
National Aeronautics and Space Administration
,
Hampton, VA
, Report No.
NASA TM X-1110
.https://ntrs.nasa.gov/api/citations/19650020352/downloads/19650020352.pdf
2.
Beale
,
M. A.
,
2014
, “
Turning Vanes in Exhaust Duct Flow: Study for Energy Efficiency, Optimization and Pressure Drop Mitigation
,” Master's thesis,
Naval Postgraduate School
,
Monterey, CA
.
3.
Johnson
,
S. A.
,
1992
, “
Aircraft Ground Tests and Subscale Model Results of Axial Thrust Loss Caused by Thrust Vectoring Using Turning Vanes
,”
National Aeronautics and Space Administration
,
Edwards, CA
, Report No.
4341
.https://ntrs.nasa.gov/api/citations/19920007853/downloads/19920007853.pdf
4.
Goldman
,
L. J.
, and Seasholtz, R. G.,
1992
, “
Laser Anemometer Measurements and Computations in an Annular Cascade of High Turning Core Turbine Vanes
,”
National Aeronautics and Space Administration
,
Cleveland, OH
, Report No.
3383
.https://ntrs.nasa.gov/api/citations/19940006661/downloads/19940006661.pdf
5.
Johansson
,
M.
,
Mårtensson
,
J.
,
Abrahamsson
,
H.
,
Povey
,
T.
, and
Chana
,
K.
,
2015
, “
Aerothermal Measurements and Predictions of an Intermediate Turbine Duct Turning Vane
,”
ASME
Paper No. GT2015-43449.10.1115/GT2015-43449
6.
Riebl
,
S. F.
,
Wakelam
,
C.
, and
Niehuis
,
R.
,
2020
, “
Investigation of the Loss Generation in a Turning Vane Frame at Different Inlet Turbulence Conditions
,”
ASME
Paper No. GT2020-14166.10.1115/GT2020-14166
7.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2019
, “
A Review of Prewhirl Regulation by Inlet Guide Vanes for Compressor and Pump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
233
(
6
), pp.
803
817
.10.1177/0957650918820795
8.
Kennedy
,
J. J.
,
2009
, “
Research Into the Installation of, and Optimisation of, Turning Vanes and Drag Reduction Technology as Applied to the Land Rover Discovery MK3 Vehicle
,” Master's thesis,
University of Strathclyde
,
Glasgow, Scotland
.
9.
Nakagawa
,
M.
,
Kallweit
,
S.
,
Michaux
,
F.
, and
Hojo
,
T.
,
2016
, “
Typical Velocity Fields and Vortical Structures Around a Formula One Car, Based on Experimental Investigations Using Particle Image Velocimetry
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
9
(
2
), pp.
754
771
.10.4271/2016-01-1611
10.
Chan
,
W. K.
,
Wong
,
Y. W.
,
Yu
,
S. C. M.
, and
Chua
,
L. P.
,
2002
, “
A Computational Study of the Effects of Inlet Guide Vanes on the Performance of a Centrifugal Blood Pump
,”
Artif. Organs
,
26
(
6
), pp.
534
542
.10.1046/j.1525-1594.2002.06917.x
11.
Si
,
X. A.
,
Talaat
,
M.
, and
Xi
,
J.
,
2023
, “
Effects of Guiding Vanes and Orifice Jet Flow of a Metered-Dose Inhaler on Drug Dosimetry in Human Respiratory Tract
,”
Exp. Comput. Multiphase Flow
,
5
(
3
), pp.
247
261
.10.1007/s42757-022-0141-y
12.
Lee
,
K.-J.
,
Lee
,
H.-D.
, and
Choi
,
S.-H.
,
2019
, “
A Design and Validation Study of a Non-Axisymmetric Preswirl Stator
,”
Ocean Eng.
,
189
, p.
106365
.10.1016/j.oceaneng.2019.106365
13.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2012
, “
Compressor Performance and Operability in Swirl Distortion
,”
ASME J. Turbomach.
,
134
(
4
), p.
041008
.10.1115/1.4003657
14.
Okonkwo
,
P.
, and
Smith
,
H.
,
2016
, “
Review of Evolving Trends in Blended Wing Body Aircraft Design
,”
Prog. Aerosp. Sci.
,
82
, pp.
1
23
.10.1016/j.paerosci.2015.12.002
15.
Uranga
,
A.
,
Drela
,
M.
,
Hall
,
D. K.
, and
Greitzer
,
E. M.
,
2018
, “
Analysis of the Aerodynamic Benefit From Boundary Layer Ingestion for Transport Aircraft
,”
AIAA J.
,
56
(
11
), pp.
4271
4281
.10.2514/1.J056781
16.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2019
, “
Nonaxisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.10.1115/1.4043343
17.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2023
, “
Mitigation of Boundary Layer Ingestion Circumferential Distortion Using Nonaxisymmetric Fan Exit Guide Vanes
,”
ASME J. Turbomach.
,
145
(
3
), p.
031008
.10.1115/1.4055645
18.
Hoopes
,
K. M.
, and
O'Brien
,
W. F.
,
2013
, “
The StreamVane Method: A New Way to Generate Swirl Distortion for Jet Engine Research
,”
AIAA
Paper No. 2013-3665.10.2514/6.2013-3665
19.
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2020
, “
Development, Analysis, and Validation of a Simultaneous Inlet Total Pressure and Swirl Distortion Generator
,”
ASME
Paper No. GT2020-16125.10.1115/GT2020-16125
20.
Castillo Pardo
,
A.
, and
Taylor
,
J. V.
,
2021
, “
Non-Axisymmetric Complete Flow Conditioning Gauzes
,”
Exp. Fluids
,
62
(
10
), p. 200.10.1007/s00348-021-03290-9
21.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
22.
Lau
,
Y. L.
,
Leung
,
R. C. K.
, and
So
,
R. M. C.
,
2007
, “
Vortex-Induced Vibration Effect on Fatigue Life Estimate of Turbine Blades
,”
J. Sound Vib.
,
307
(
3–5
), pp.
698
719
.10.1016/j.jsv.2007.06.029
23.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101202
.10.1115/1.3222904
24.
Besem
,
F. M.
,
Kamrass
,
J. D.
,
Thomas
,
J. P.
,
Tang
,
D.
, and
Kielb
,
R. E.
,
2016
, “
Vortex-Induced Vibration and Frequency Lock-In of an Airfoil at High Angles of Attack
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011204
.10.1115/1.4031134
25.
Sagmo
,
K. F.
,
Tengs
,
E. O.
,
Bergan
,
C. W.
, and
Storli
,
P. T.
,
2019
, “
PIV Measurements and CFD Simulations of a Hydrofoil at Lock-In
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
, p.
062006
.10.1088/1755-1315/240/6/062006
26.
Ren
,
Y.
,
Lu
,
J.
,
Deng
,
G.
,
Wu
,
B.
, and
Zhou
,
D.
,
2023
, “
Frequency Lock-In Phenomenon of Vortex Induced Vibration of a Rotating Blade Considering Bending-Torsion Coupling Effect
,”
ASME J. Turbomach.
,
145
(
2
), p.
021003
.10.1115/1.4055528
27.
Acton
,
P.
,
Fottner
,
L.
, and
Fransson
,
T. H.
,
1998
, “
Investigation of the Boundary Layer Development on a Highly Loaded Low Pressure Turbine Cascade Under the Influence of Unsteady Flow Conditions
,”
Unsteady Aerodynamics and Aeroelasticity of Turbomachines
, Stockholm, Sweden, Sept. 14–18, pp.
393
406
.10.1007/978-94-011-5040-8_26
28.
Sarkar
,
S.
,
2009
, “
Influence of Wake Structure on Unsteady Flow in a Low Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
131
(
4
), p.
041016
.10.1115/1.3072490
29.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.10.1115/1.4029126
30.
De Vincentiis
,
L.
,
Durović
,
K.
,
Lengani
,
D.
,
Simoni
,
D.
,
Pralits
,
J.
,
Henningson
,
D. S.
, and
Hanifi
,
A.
,
2023
, “
Effects of Upstream Wakes on the Boundary Layer Over a Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
145
(
5
), p.
051011
.10.1115/1.4056108
31.
Teng
,
S.
,
Sohn
,
D. K.
, and
Han
,
J.-C.
,
2000
, “
Unsteady Wake Effect on Film Temperature and Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
2
), pp.
340
347
.10.1115/1.555457
32.
Heidmann
,
J. D.
,
Lucci
,
B. L.
, and
Reshotko
,
E.
,
2001
, “
An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
123
(
2
), pp.
214
221
.10.1115/1.1354621
33.
Sarkar
,
S.
, and
Babu
,
H.
,
2015
, “
Large Eddy Simulation on the Interactions of Wake and Film-Cooling Near a Leading Edge
,”
ASME J. Turbomach.
,
137
(
1
), p.
011005
.10.1115/1.4028219
34.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
.10.1115/1.4027374
35.
Zhang
,
Q.
, and
Liu
,
Y.
,
2015
, “
Influence of Incident Vortex Street on Separated Flow Around a Finite Blunt Plate: PIV Measurement and POD Analysis
,”
J. Fluids Struct.
,
55
, pp.
463
483
.10.1016/j.jfluidstructs.2015.03.017
36.
Hayden
,
A.
,
Hefner
,
C.
,
Untaroiu
,
A.
,
Gillespie
,
J.
, and
Lowe
,
K. T.
,
2021
, “
Numerical Simulation on the Vortex Shedding From Airfoils of a Swirl Distortion Generator
,”
ASME
Paper No. GT2021-58963.10.1115/GT2021-58963
37.
Hayden
,
A. P.
,
Hefner
,
C.
,
Gillespie
,
J.
,
Untaroiu
,
A.
, and
Lowe
,
T.
,
2023
, “
A Computational and Experimental Analysis of Vortex Shedding From Complex Turning Vanes
,”
AIAA
Paper No. 2023-0049.10.2514/6.2023-0049
38.
Beresh
,
S. J.
,
2021
, “
Time-Resolved Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
32
(
10
), p.
102003
.10.1088/1361-6501/ac08c5
39.
Troolin
,
D. R.
,
Longmire
,
E. K.
, and
Lai
,
W. T.
,
2006
, “
Time Resolved PIV Analysis of Flow Over a NACA 0015 Airfoil With Gurney Flap
,”
Exp. Fluids
,
41
(
2
), pp.
241
254
.10.1007/s00348-006-0143-8
40.
Kurtulus
,
D. F.
,
Scarano
,
F.
, and
David
,
L.
,
2007
, “
Unsteady Aerodynamic Forces Estimation on a Square Cylinder by TR-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
185
196
.10.1007/s00348-006-0228-4
41.
Villegas
,
A.
, and
Diez
,
F. J.
,
2014
, “
Evaluation of Unsteady Pressure Fields and Forces in Rotating Airfoils From Time-Resolved PIV
,”
Exp. Fluids
,
55
(
4
), p. 1697.10.1007/s00348-014-1697-5
42.
Eshbal
,
L.
,
Rinsky
,
V.
,
David
,
T.
,
Greenblatt
,
D.
, and
van Hout
,
R.
,
2019
, “
Measurement of Vortex Shedding in the Wake of a Sphere at Re = 465
,”
J. Fluid Mech.
,
870
, pp.
290
315
.10.1017/jfm.2019.250
43.
Morton
,
C.
, and
Yarusevych
,
S.
,
2020
, “
Vortex Shedding From Cylinders With Two Step Discontinuities in Diameter
,”
J. Fluid Mech.
,
902
, p.
A29
.10.1017/jfm.2020.593
44.
Crane
,
R. J.
,
Popinhak
,
A. R.
,
Martinuzzi
,
R. J.
, and
Morton
,
C.
,
2022
, “
Tomographic PIV Investigation of Vortex Shedding Topology for a Cantilevered Circular Cylinder
,”
J. Fluid Mech.
,
931
, p.
R1
.10.1017/jfm.2021.904
45.
Acharya
,
A. S.
,
Lowe
,
K. T.
, and
Ng
,
W. F.
,
2023
, “
Mean Flow Characteristics Downstream of a Vortex Tube Separator Array
,”
AIAA J.
,
61
(
11
), pp.
4990
5008
.10.2514/1.J062556
46.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Cham, Switzerland
.
47.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
48.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
49.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
50.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
, Nauka, Moscow, Russia, pp.
166
178
.
51.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
52.
Schmidt
,
O. T.
,
2022
, “
Spectral Proper Orthogonal Decomposition Using Multitaper Estimates
,”
Theor. Comput. Fluid Dyn.
,
36
(
5
), pp.
741
754
.10.1007/s00162-022-00626-x
53.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
54.
Tang
,
S. L.
,
Djenidi
,
L.
,
Antonia
,
R. A.
, and
Zhou
,
Y.
,
2015
, “
Comparison Between Velocity-and Vorticity-Based POD Methods in a Turbulent Wake
,”
Exp. Fluids
,
56
(
8
), p. 169.10.1007/s00348-015-2038-z
55.
Vitkovicova
,
R.
,
Yokoi
,
Y.
, and
Hyhlik
,
T.
,
2020
, “
Identification of Structures and Mechanisms in a Flow Field by POD Analysis for Input Data Obtained From Visualization and PIV
,”
Exp. Fluids
,
61
(
8
), p. 171.10.1007/s00348-020-03005-6
You do not currently have access to this content.